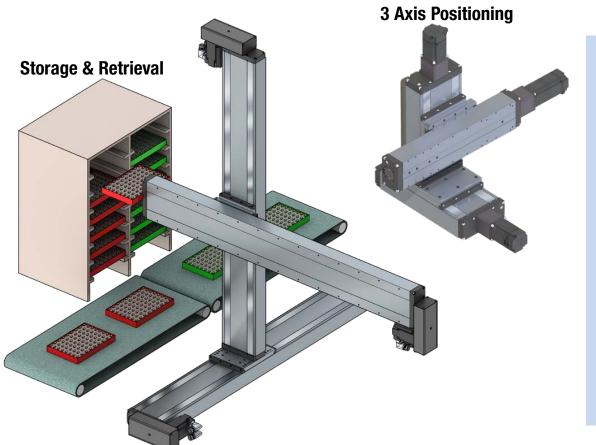


LINEAR SOLUTIONS MADE EASY

TRS: A Rugged, Accurate Stage

The TRS is a highly capable stage product and is the perfect for a base in multi-axis systems. The machined, rigid design handles high moment loading while providing reliable positioning along the length of travel.

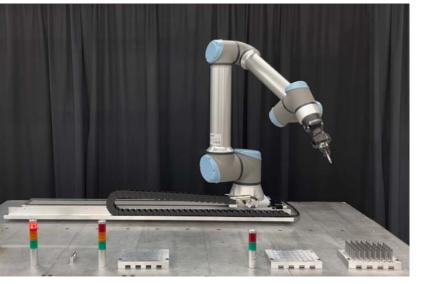
Maximum flexibility is achieved through stroke configurable design, ensuring the right stroke length can be selected to minimize footprint. Online CAD and Sizing tools enable rapid design iterations throughout the design process.



A Comparison of Screw Drive Actuators

-	TRS	B3S	MXE-S	MXE-P
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	And Constant
Features:	Superior rigidity, high moment load capacities	Internal bearing, highest load and bending moments	Basic guidance and support	High load and bending moment capacities
Load up to: (with options)	4,320 lb [1,960 kg]	8,000 lb [3,629 kg]	1,040 lb [472 kg]	2,584 lb [1,172 kg]
Thrust up to:	2,829 lbf [12.6 kN]	2,700 lbf [12 kN]	4,300 lbf [19.1 kN]	4,300 lbf 19.1 kN]
Speed up to:	50 in/sec [12,70 mm/sec]	60 in/sec [1,500 mm/sec]	60 in/sec [1,500 mm/sec]	60 in/sec [1,500 mm/sec]
Stroke Length up to:	87 in [2,200 mm]	179 in [4,550 mm]	179 in [4,550 mm]	179 in [4,550 mm]
Screw/Nut Type	Ball & Roller	Solid & Ball	Solid & Ball	Solid & Ball
	www.tolom	natic.com for complete info	ormation, search by literatu	re number:
Literature Number:	3600-4222	3600-4176	8300-4000	8300-4000

(Not all models deliver ALL maximum values listed, i.e.: Maximum thrust may not be available with maximum speed)



CONTENTS

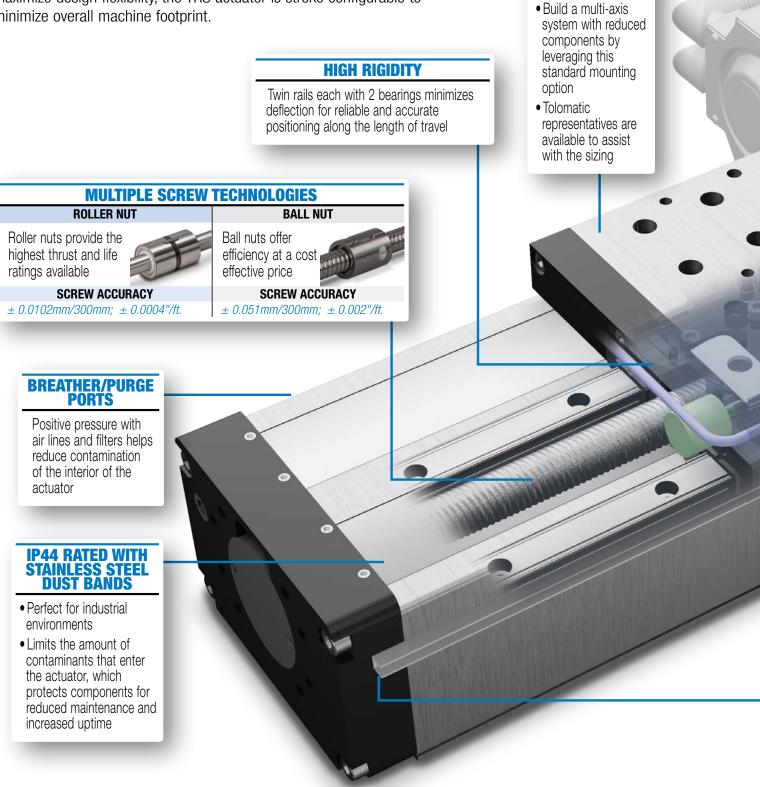
Rodless Comparison TRS_2
ApplicationsTRS_3
TRS FeaturesTRS_3
TRS SpecificationsTRS_6
TRS DimensionsTRS_11
SwitchesTRS_13
Application Data WorksheetTRS_17
Selection Guidelines TRS_18
TRS OrderingTRS_19
Other Tolomatic ProductsTBS 20

Laser Engraving

Robot Arm Positioning

- Inspection and measurement
- Medical equipment
- Pick and place
- Precision grinders
- Stage motion control
- Table positioning
- Test stands
- Machine centers
- Machine tools
- Drilling
- Cutting

- Positioning
 - Material handling systems
 - Pick and place
 - X Y Z axis (2 and 3 axis configurations)


Tolomatic EXCELLENCE IN MOTION

TRS_3

TWIN RAIL STAGE ENCLOSED DESIGN PROFILED RAIL ACTUATOR

ENDURANCE TECHNOLOGY A Tolomatic Design Principle REDUCE UNPLANNED DOWNTIME: Endurance Technology features are designed for maximum durability to provide extended service life.

The TRS Twin profile rail stage with enclosed design is built from the ground up to be highly rigid and accurate. Available in 100, 165 and 225 sizes and capable of handling loads up to 4,320 lb (1,960 kg). To maximize design flexibility, the TRS actuator is stroke configurable to minimize overall machine footprint.

CARRIER

TO CARRIER

MOUNTING

Tolomatic ... MAXIMUM DURABILITY

YOUR MOTOR HERE

- For maximum design flexibility, specify the motor or gearbox to be installed with in-line or reverse parallel mounting.
- For out of the box installation, the TRS actuator ships with the proper mounting hardware

STANDARD MOUNTING FEATURES

- *Threaded mounting holes:* Evenly spaced along the base of the actuator
- *Dowel pin holes:* Ensures the actuator can be aligned without additional modification

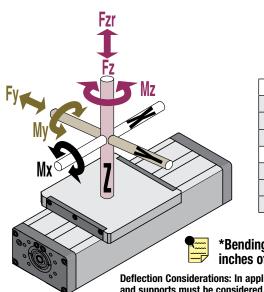
OPTIONAL TOE CLAMP MOUNTING

Slot and clamps provide convenient mounting option for fast installation

CLEAN SMOOTH DESIGN

- Smooth and flat surface to create the cleanest sealing design in the industry
- Wiper and seal are integrated in carrier design to enable clean and smooth operation

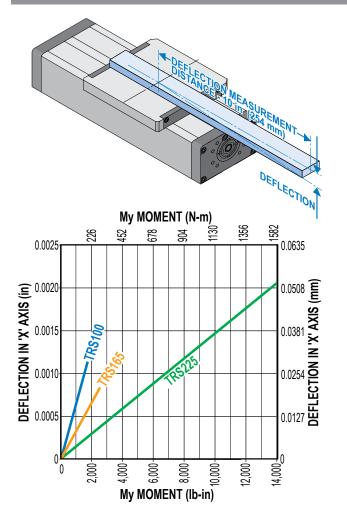
OPTIONAL SWITCH WITH RAIL

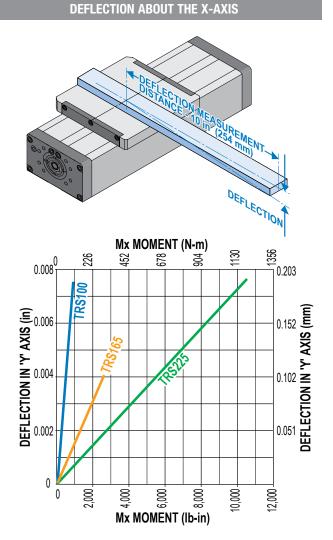

• 12 switch choices in normally open or closed; with flying leads or quickdisconnect

• Easily adjust the location of switches along the length of the actuator

Tolomatic EXCELLENCE IN MOTION

BENDING MOMENTS


		MAX	BENDIN	IG MOMEN	NTS AN	D LOADS*		
			etric			U.S. Co	nventiona	
Max. Bending Moments		100	165	225		100	165	225
Mx (Roll)	N-m	105	294	1,180	lb-in	932	2,604	10,448
My (Pitch)	N-m	256	348	1,610	lb-in	2,266	3,084	14,247
Mz (Yaw)	N-m	231	315	1,454	lb-in	2,047	2,785	12,868
Max. Loads								
Fz (Radial)	kg	492	615	1,960	lb	1,085	1,356	4,320
Fzr (Reverse Radial)	kg	421	<i>526</i>	1,521	lb	928	1,160	3,352
Fy (Lateral)	kg	380	475	1,684	lb	838	1,048	3,712


*Bending moments & load specifications are based on (5,000 kM) 200,000,000 linear inches of carrier travel.

Deflection Considerations: In applications where substantial Mx or My moments come into play, deflection of the actuator frame, carrier and supports must be considered. The deflection values shown in the Load Deflection charts, are based on actuator mounted with its base fully restrained to a surface.

LOAD DEFLECTION

DEFLECTION ABOUT THE Y-AXIS

TRS SPECIFICATIONS

SPECIFICATIONS RELATED TO ACTUATOR SIZE AND SCREW SELECTION

					TRS LEA	D SCREW	S METRIC					
			CY		Σ	Z			INERTIA			υz
OR		-	LEAD ACCURACY		MAXIMUM Thrust	MAXIMUM Stroke		BASE AC	TUATOR		PER/in	DYNAMIC Friction Torque
ACTUATOR	SCREW CODE	LEAD	ACC	BACKLASH	THR	STR	Inline	Inline HT	RP1	RP2	OF STROKE	DYN TOR TOR
ACI	SCF	(mm)	(mm/300)	(mm)	(N)	(mm)		(k	g-m² x 10⁻	⁶)		(N-m)
TRS100	BNM05	5	0.100	0.07 - 0.12	2,500	750	40.82		135.32		1.29	0.18
	BNM10	10	0.100	0.07 - 0.12	2,500	750	45.35		1 <i>39.85</i>		1.29	0.19
	BNM05	5	0.100	0.07 - 0.12	2,500	1,100	40.67	—	135.17		1.29	0.18
TRS165	BNM10	10	0.100	0.07 - 0.12	2,500	1,100	43.30	—	137.80		1.29	0.19
110100	RN05	5	0.010	0.03	2,500	557	38.48	—	132.98		0.99	0.21
	RN10	10	0.010	0.03	2,500	557	41.67		136.16		0.99	0.21
	BNM05	5	0.050	0.05 - 0.13	9,871	2,200	168.4	283.3	651.4	234.8	7.48	0.49
	BNM10	10	0.050	0.05 - 0.13	9,364	2,200	184.5	299.3	667.4	238.9	7.48	0.49
TRS225	BN01	25.4	0.182	0.13 - 0.38	3,688	2,200	305.8	420.6	788.7	269.2	7.98	0.49
100220	RN04	4	0.010	0.03	12,584	793	72.7	187.6	555.2	210.8	2.95	0.49
	<i>RN05</i>	5	0.010	0.03	12,584	793	74.7	189.6	557.2	211.3	2.95	0.49
	RN10	10	0.010	0.03	9,364	793	90.7	205.6	573.2	215.3	2.95	0.49

				TRS LE	AD SCRE	WS u.s. co	NVENTIONAL	-				
			ſCΛ		M	M			INERTIA			UZ
<u>0</u> R		9	LEAD Accuracy		Maximum Thrust	MAXIMUM Stroke		BASE AC	TUATOR		PER/in	DYNAMIC Friction Torque
ACTUATOR	DE	LEAD	LEA ACC	BACKLASH	THR	STR	Inline	Inline HT	RP1	RP2	OF Stroke	DYN FRIG
AC	SCRE	(mm)	(in/ft)	(in)	(lbf)	(in)	(lb-in ²)	(lb-in)				
TRS100	BNM05	5	0.0040	0.0028 - 0.0050	562	29.5	0.1397	—	0.4631	—	0.0044	1.56
	BNM10	10	0.0040	0.0028 - 0.0050	562	29.5	0.1552	—	0.4786	—	0.0044	1.69
	BNM05	5	0.0040	0.0028 - 0.0050	562	43.3	0.1392	—	0.4626	—	0.0044	1.56
TBS165	BNM10	10	0.0040	0.0028 - 0.0050	562	43.3	0.1482	—	0.4716	—	0.0044	1.69
110100	RN05	5	0.0004	0.0012	562	21.9	0.1317	—	0.4551	—	0.0034	1.88
	RN10	10	0.0004	0.0012	562	21.9	0.1426	—	0.466	—	0.0034	1.88
	BNM05	5	0.0020	0.0020 - 0.0050	2219	86.6	0.5765	0.9696	2.2294	0.8037	0.0256	4.38
	BNM10	10	0.0020	0.0020 - 0.0050	2105	86.6	0.6313	1.0244	2.2842	0.8174	0.0256	4.38
TRS225	BN01	25.4	0.0070	0.0050 - 0.0150	829	86.6	1.0465	1.4396	2.6993	0.9212	0.0273	4.38
110220	RN04	4	0.0004	0.0012	2829	31.2	0.2489	0.6420	1.9001	0.7214	0.0101	4.38
	RN05	5	0.0004	0.0012	2829	31.2	0.2556	0.6487	1.9068	0.7231	0.0101	4.38
	RN10	10	0.0004	0.0012	2105	31.2	0.3104	0.7035	1.9616	0.7368	0.0101	4.38

SCREW TYPE DES RN RO BN E

DESCRIPTION Roller Nut Ball Nut **DESCRIPTION** Reverse Parallel

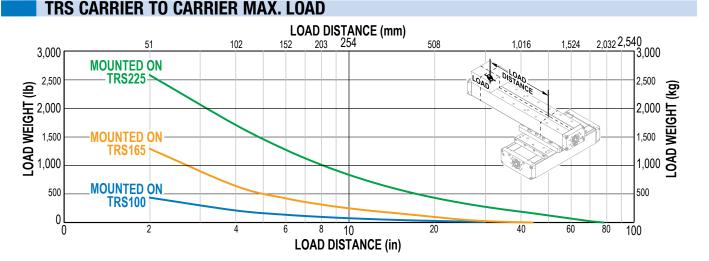
CODE

RP

Contact the factory for higher accuracy and lower backlash options.

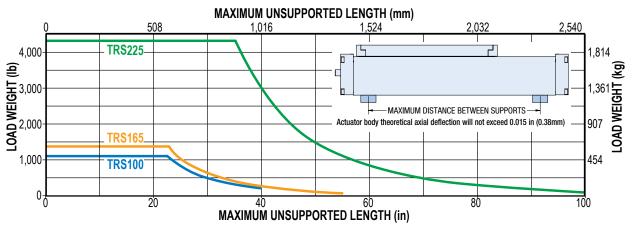
ACTUATOR SPECIFICATIONS

	1	TRS	100		TRS	165				TRS	225		
		Ball	Nut	Ball	Nut	Rolle	r Nut	E	BALL NU	Г	E	BALL NU [.]	Г
		LMI	RP	LMI	RP	LMI	RP	LMI	LMI HT	RP	LMI	LMI HT	RP
Carrier Assy Weight	kg	2.2	2.2	3.2	3.2	3.6	3.6	8.5	8.5	8.5	8.7	8.7	8.7
Base Wgt. (incl. carrier)	kg	6.0	7.8	8.4	10.3	8.7	10.6	21.7	22.7	24.1	22.2	23.2	24.5
Wgt. per unit of stroke	kg/mm	0.010	0.010	0.015	0.015	0.014	0.014	0.028	0.028	0.028	0.027	0.027	0.027
Carrier Assy Weight	lb	4.8	4.8	7.1	7.1	7.8	7.8	18.7	18.7	18.7	19.1	19.1	19.1
Base Wgt. (incl. carrier)	lb	13.2	17.2	18.6	22.6	19.3	23.3	47.9	50.1	53	48.9	51.1	54
Wgt. per unit of stroke	lb/in	0.56	0.56	0.81	0.81	0.80	0.80	1.6	1.6	1.6	1.5	1.5	1.5
Temperature Range	nge 4-54 °C; 40-130 °F												


STRAIGHTNESS AND FLATNESS

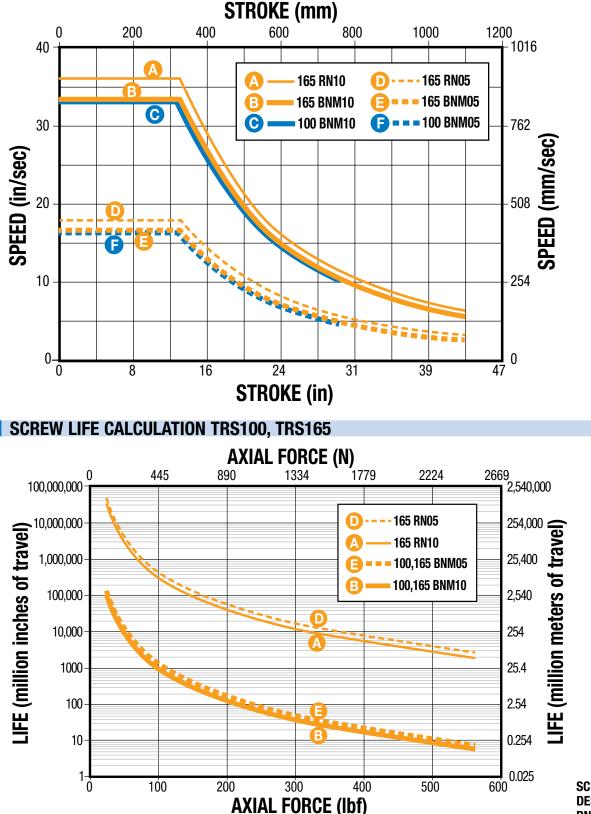
Length of	mm	60	120	180	240	300	360	420	480	540	600	660	720	780	840	900	960	1,020	1,080	1,100
Travel	in	2.4	4.7	7.1	9.5	11.8	14.2	16.5	18.9	21.3	23.6	26.0	28.4	30.7	33.1	35.4	37.8	40.2	42.5	43.3
Straightness/ Flatness	μm	20	21	22	23	24	26	27	28	29	30	32	33	34	35	36	38	39	40	40

Listed values are intended for reference purposes only, and not as an engineering standard of absolute tolerance for a given actuator. Reference
values are measured in ideal conditions. Actual values in the field may vary due to temperature, mounting surface, or other environmental factors.


• Heat generated by the motor and drive should be taken into consideration as well as linear velocity and work cycle time. For applications that require operation outside of the recommended temperature range, contact the factory.

An option is available at additional cost to document the straightness and flatness values specific to the actuator, contact the factory prior to
ordering.

TRS SUPPORT RECOMMENDATIONS

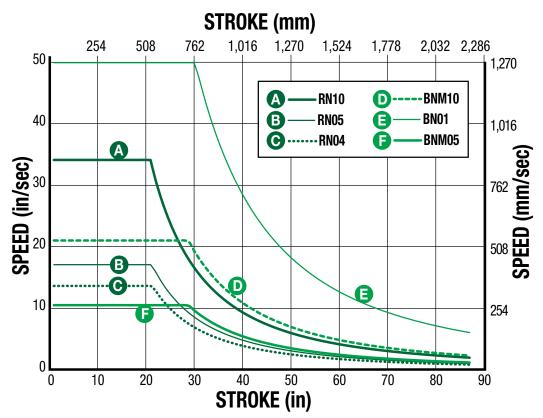

Tolomatic

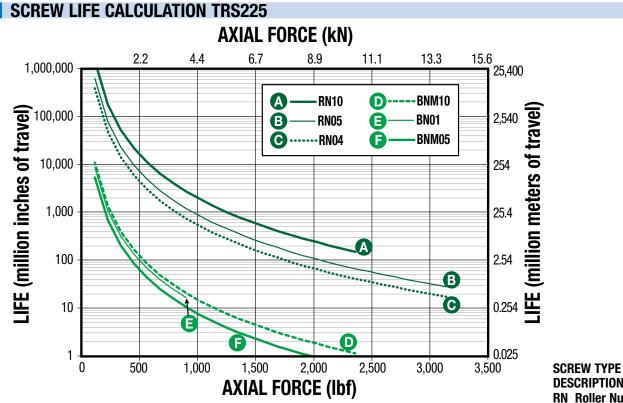
SCREW/NUT COMBINATIONS

TRS100, TRS165 BALL & ROLLER SCREW CRITICAL SPEED CAPACITIES

SCREW TYPE DESCRIPTION RN Roller Nut BN Ball Nut

**Life indicates theoretical maximum life of screw only, under ideal conditions and does not indicate expected life of actuator.


Tolomatic

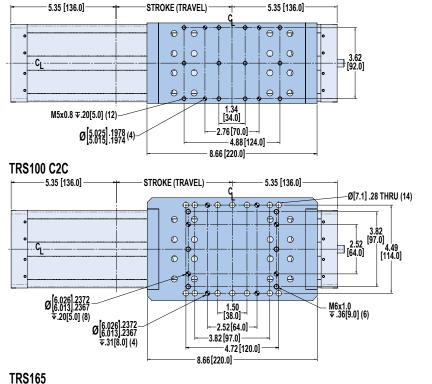


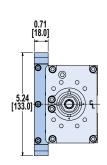
SCREW/NUT COMBINATIONS

TRS225 BALL & ROLLER SCREW CRITICAL SPEED CAPACITIES

**Life indicates theoretical maximum life of screw only, under ideal conditions and does not indicate expected life of actuator.

DESCRIPTION **RN Roller Nut BN Ball Nut**

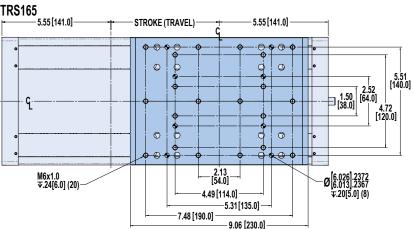

TRS100

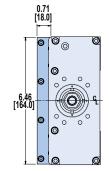


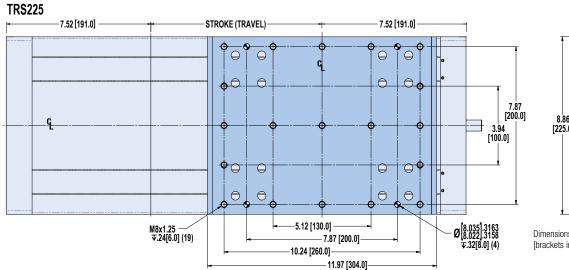
4.09 [104.0]

0 0 0

 \mathbf{O}

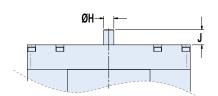

Ø

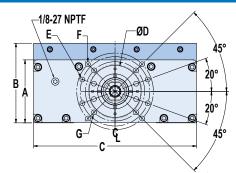

ò


0

0

o 0 o

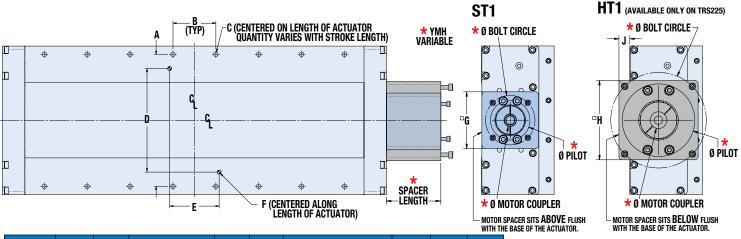




Dimensions in inches [brackets indicate dimensions in mm]

DIMENSIONS, End View

No Motor Mount (threaded

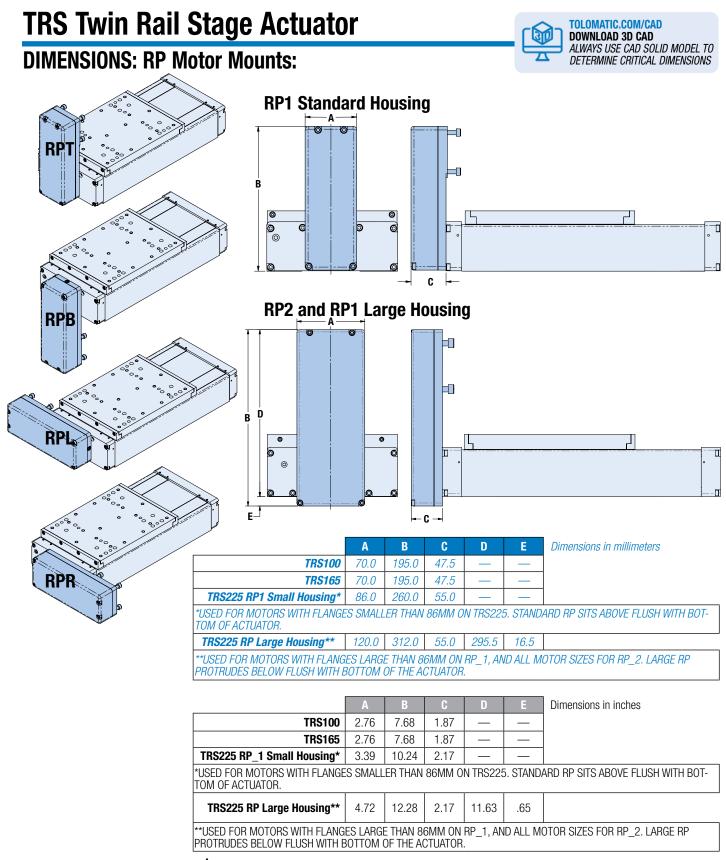

holes and bolt circle; *when no motor mount is selected*)

	Α	В	C	D	E	F	G	Н	J
TRS100	67.0	81.8	100.0	42.05 / 42.00	<i>M6x1.0</i> ↓13.0 (4) ON DIA 57.00 B.C.	<i>M6</i> x1.0↓12.0 (4) <i>ON DIA 60.00 B.C.</i>	_	10.000 / 9.975	9.0
TRS165	67.0	81.8	165.0	42.05 / 42.00	<i>M6x1.0</i> ↓13.0 (4) ON DIA 57.00 B.C.	<i>M6</i> x1.0↓12.0 (4) <i>ON DIA 60.00 B.C.</i>	_	10.000 / 9.975	9.0
TRS225	87.0	110.0	225.0	72.05 / 72.00	<i>M8x1.25</i> ↓1 <i>8.0 (4)</i> <i>ON DIA 96.00 B.C.</i>	<i>M8x1.25</i> ↓18.0 (4) ON DIA 106.00 B.C.	M8x1.25↓18.0 (4) ON DIA 82.00 B.C.	14.000 / 13.975	20.9
Dimensio	ns in mi	llimeters	S						

	Α	В	C	D	E	F	G	Н	J
TRS100	2.64	3.22	3.94	1.656 / 1.654	M6x1.0	M6x1.0 J0.47 (4) ON DIA 2.362 B.C.	_	0.3937 / 0.3927	0.36
TRS165	2.64	3.22	6.50	1.656 / 1.654	M6x1.0	M6x1.0	_	0.3937 / 0.3927	0.36
TRS225	3.43	4.33	8.86	2.837 / 2.835	M8x1.25 J0.71 (4) ON DIA 3.780 B.C.	M8x1.25 J0.71 (4) ON DIA 4.173 B.C.	M8x1.25	0.5512 / 0.5502	0.82

Dimensions in inches

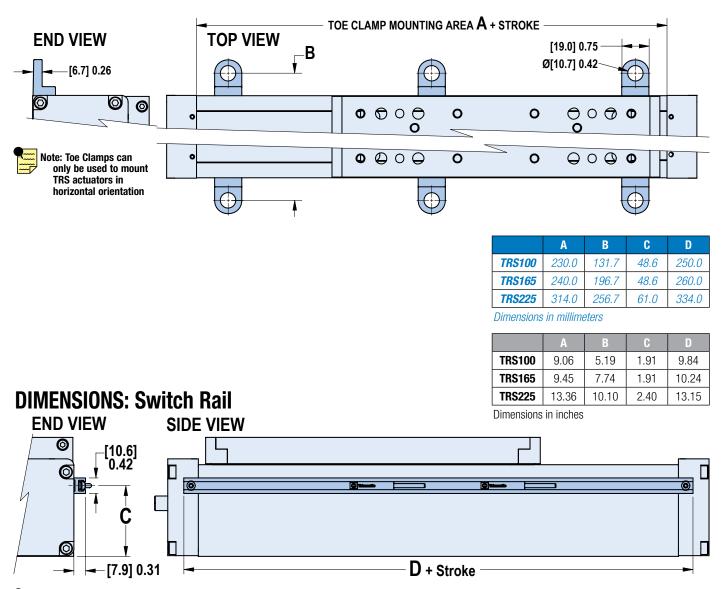
DIMENSIONS, LMI & Bottom Views


	Α	В	C	D	E	F	G	Н	J
TRS100	75.0	60.0	<i>M8x1.25</i> ↓12.7	55.0	75.0	6.026/6.013↓12.0	70.0	-	-
TRS165	135.0	60.0	<i>M8x1.25</i> ↓12.7	100.0	75.00	6.026/6.013↓12.0	70.0	-	-
TRS225	200.0	65.0	<i>M8x1.25</i> ↓12.7	157.0	75.0	6.026/6.013↓12.0	86.0	120.0	16.5

Dimensions in millimeters

	Α	В	C	D	E	F	G	H	J
TRS100	2.95	2.36	M8x1.25 ∓0.50	2.17	2.95	0.2372 / 0.2367 ↓0.47	2.76	-	-
TRS165	5.31	2.36	M8x1.25 ∓0.50	3.94	2.95	0.2372 / 0.2367 ↓0.47	2.76	-	-
TRS225	7.87	2.56	M8x1.25 ∓0.50	6.18	2.95	0.2372 / 0.2367 ↓0.47	3.39	4.72	.65

Dimensions in inches



*LARGE FRAME MOTORS AND SMALLER SIZE ACTUATORS: Cantilevered motors need to be supported, if subjected to continuous rapid reversing duty and/or under dynamic conditions.

DIMENSIONS: Toe Clamps

Note: Switch rail is installed on the right side of the actuator (from the motor end) for all motor mounting configurations except RPR1 where it is installed on the left side of the actuator.

TRS Twin Rail Stage Actuator SWITCHES

SPECIFICATIONS

TRS products offer a wide range of sensing choices. There are 12 switch choices: reed, solid state PNP (sourcing) or solid state NPN (sinking); in normally open or normally closed; with flying leads or quick-disconnect.

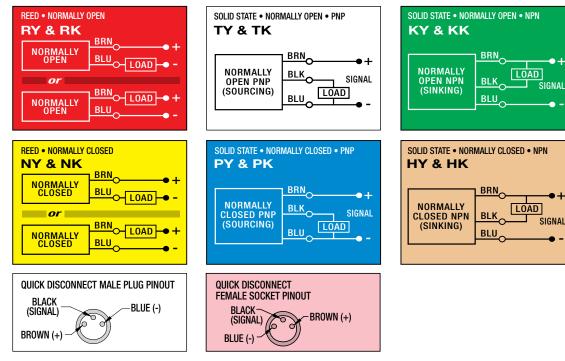
Commonly used for end-of-stroke positioning, these switches allow drop-in installation anywhere along the rail on the side of the actuator. The one-piece design includes the retained fastening hardware.

Switches are used to send digital signals to PLC (programmable logic controller), TTL, CMOS circuit or other controller device. Switches contain reverse polarity protection. Solid state QD cables are shielded; shield should be terminated at flying lead end.

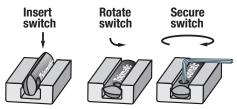
All switches are CE rated and are RoHS compliant. Switches feature bright red or yellow LED signal indicators; solid state switches also have green LED power indicators.

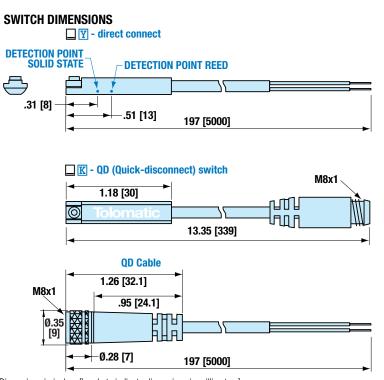
	Order Code	Lead	Switching Logic	Power LED	Signal LED	Operat- ing Voltage	** Power Rating (Watts)	Switching Current (mA max.)	Current Consump- tion	Voltage Drop	Leakage Current	Temp. Range	Shock / Vibration
	RY	5m	SPST Normally	_	Red	5 - 240							
REED	RK	QD*	Open	🔘 Tolomatio	c • 81009082	AC/DC	**10.0	100mA	_	3.0 V	_		
	NY	5m	SPST Normally		Yellow	5 - 110	10.0	TOOTIA		max.			
	NK	QD*	Closed	🔘 Tolomatio	C 81009084	AC/DC							
	ΤY	5m	PNP (Sourcing)	Green	Yellow							14	
	TK	QD*	Normally Open	o Tolomatio	C 81009088							to 158°F	50 G /
	ΚY	5m	NPN (Sinking)	Green	Red							[-10 to	9 G
SOLID	KK	QD*	Normally Open	🔘 Tolomatio	C 🔗 81009090	10 - 30	**3.0	100mA	20 mA @	2.0 V	0.05 mA	70°C]	
STATE	PY	5m	PNP (Sourcing)	Green	Yellow	VDC	0.0	1001111	24V	max.	max.		
	PK	QD*	Normally Closed	🚫 Tolomatio	C 🔗 81009092								
	ΗY	5m	NPN (Sinking)	Green	Red								
	ΗK	QD*	Normally Closed	o Tolomatio	c 🔗 81009094								

*QD = Quick-disconnect

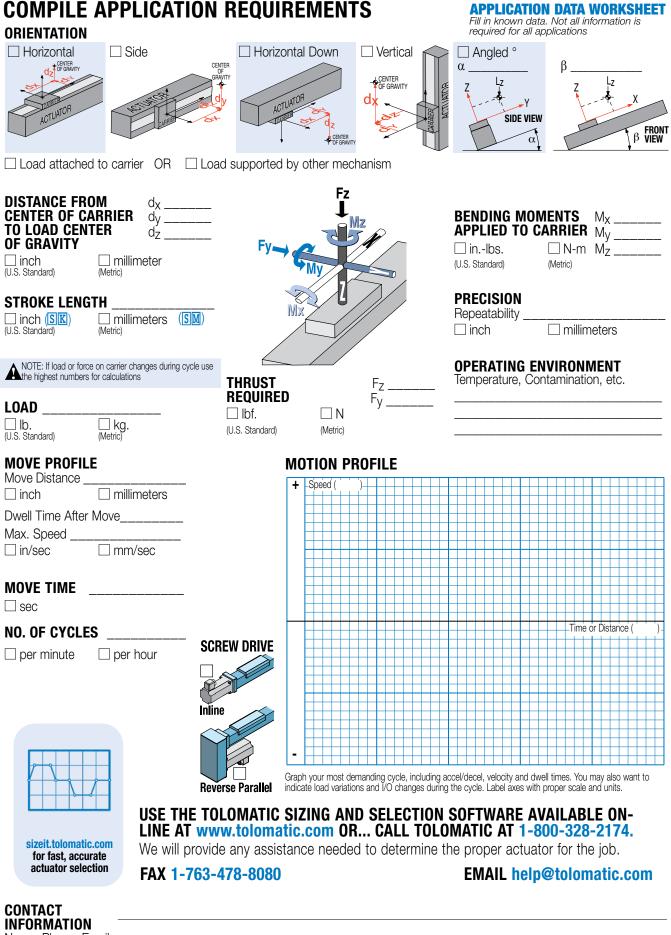

Enclosure classification IEC 529 IP67 (NEMA 6)

CABLES: Robotic grade, oil resistant polyurethane jacket, PVC insulation


A**WARNING: Do not exceed power rating (Watt = Voltage x Amperage). Permanent damage to sensor will occur.


WIRING DIAGRAMS

SWITCH INSTALLATION AND REPLACEMENT


Place switch in side groove on tube at desired location with "Tolomatic" facing outward. While applying light pressure to the switch, rotate the switch is halfway into the groove. Maintaining light pressure, rotate the switch in the opposite direction until it is fully inside the groove with "Tolomatic" visible. Re-position the switch to the exact location and lock the switch securely into place by tightening the screw on the switch.

See Page 14 for Switch Rail Dimensions

Dimensions in inches [brackets indicate dimensions in millimeters]

Name, Phone, Email Co. Name, Etc.

SELECTION GUIDELINES

The process of selecting a load bearing actuator for a given application can be complex. It is highly recommended that you contact Tolomatic or a Tolomatic Distributor for assistance in selecting the best actuator for your application. The following overview of the selection guidelines are for educational purposes only. The Tolomatic Sizelt Software is also available on Tolomatic.com

CHOOSE ACTUATOR

Choose an actuator that has the thrust, speed and moment load capacity to move the load. Use the Critical Speed graph (page TRS_9) for the screw and the Moment and Load Capacity table (pg. TRS_6) for the actuator.

2COMPARE LOAD TO MAXIMUM LOAD CAPACITIES

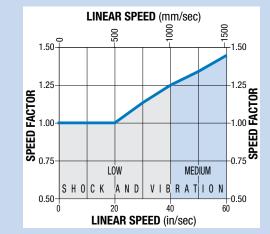
Calculate the application load (combination of load mass and forces applied to the carrier) and application bending moments (sum of all moments Mx, My, and Mz applied to the carrier). Be sure to evaluate the magnitude of dynamic inertia moments. When a rigidly attached load mass is accelerated or decelerated, its inertia induces bending moments on the carrier. Careful attention to how the load is decelerated at

the end of the stroke is required for extended actuator performance and application safety. If either load or any of your moments exceed figures indicated in the

Moment and Load Capacity table (pg. TRS_6) for the actuator consider:

- 1) Higher capacity bearing style
- 2) A larger actuator size

4) External guide system


3CALCULATE LOAD

For loads with a center of gravity offset from the carrier account for both applied (static) and dynamic loads. The load factor (LF) must not exceed the value of 1.0 $L_F = \frac{Mx}{Mx_{max}} + \frac{My}{My_{max}} + \frac{Mz}{Fx_{max}} + \frac{Fy}{Fy_{max}} + \frac{Fz}{Fz_{max}} \le 1.0$

If LF exceeds the value of 1.0, consider the four choices listed in step #2.

SPEED FACTOR

FOR APPLICATIONS WITH HIGH SPEED OR SIGNIFICANT SHOCK AND VIBRATION: Loads and bending moments must be multiplied by speed factor from the graph below to obtain full rated life of profiled rail bearing system.

4 ESTABLISH YOUR MOTION PROFILE AND CALCULATE ACCELERATION RATE

Using the application stroke length and maximum carrier velocity (or time to complete the linear motion), establish the motion profile. Select either triangular (accel-decel) or trapezoidal (accel-constant speed-decel) profile. Now calculate the maximum acceleration and deceleration rates of the move. A TRS twin rail screw-driven actuator speed should not exceed the value in the critical speed capacity graph (page TRS_9) for the screw/nut combination chosen. Also. do not exceed safe rates of dvnamic inertia moments determined in step #3.

Based on the application requirements for accuracy,

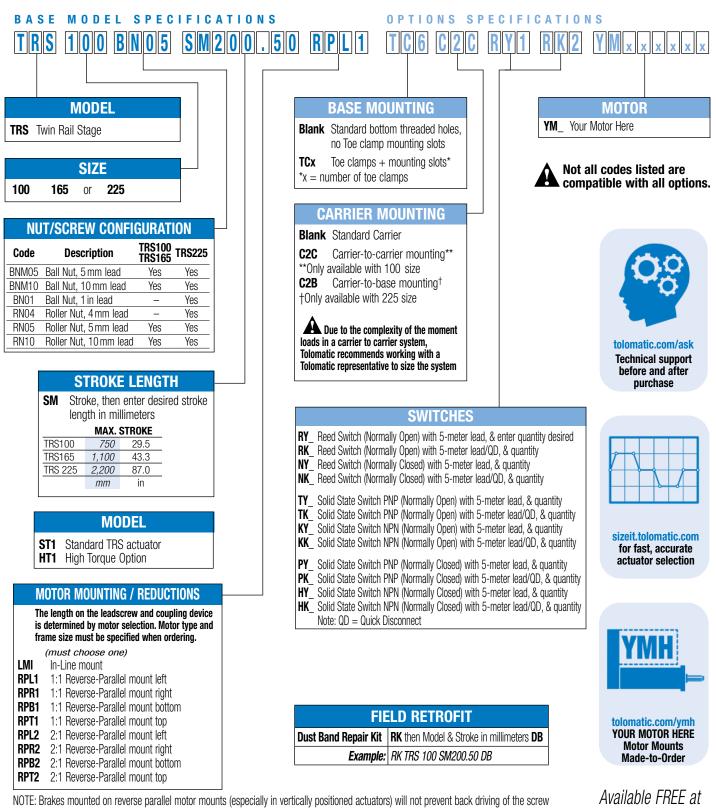
backlash, quiet operation, life, etc. select the appropriate screw type (ball screw or roller screw) and the pitch (lead). For additional information on screw selection, consult "Selecting the Optimal Screw Technology" (#9900-4644) available at www.tolomatic.com.

6 SELECT MOTOR AND DRIVE

To help select a motor and drive, leverage the Tolomatic Sizelt software, available on Tolomatic.com to calculate the application thrust and torque requirements.

CONSIDER OPTIONS

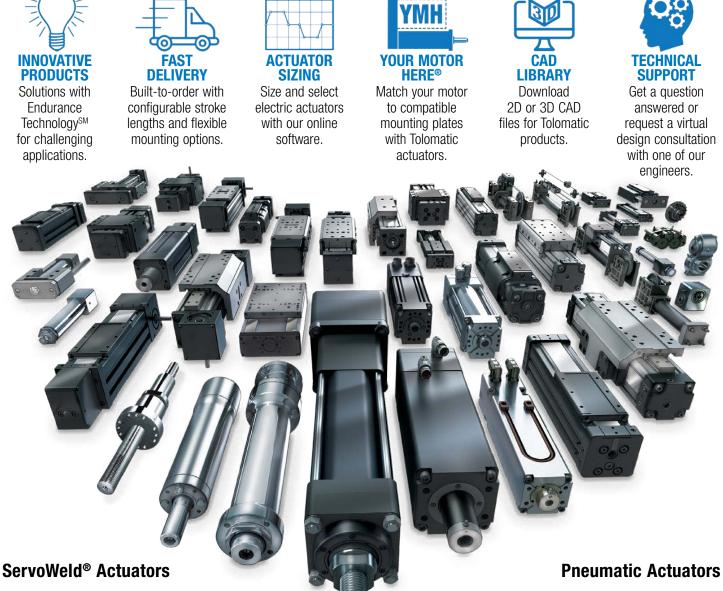
- TC_ Toe clamps
- C2C Carrier-to-carrier
 mounting
- Switches Reed, Solid State PNP or NPN, all available normally open or normally closed



sizeit.tolomatic.com for fast, accurate actuator selection

Use Tolomatic Sizing Software to determine available options and accessories based on your application requirements.

ORDERING


NOTE: Brakes mounted on reverse parallel motor mounts (especially in vertically positioned actuators) will not prevent back driving of the screw and the load falling under gravity in the event of a timing belt failure. An inline motor mount with a fail-safe brake mounted directly to the actuator shaft or a special geared or thru-shaft reverse parallel construction should be considered if a brake is required in a safety critical application. Contact Tolomatic for alternate reverse parallel brake mounting options.

Gearheads may be used with reverse parallel motor mounts. However, the torque on the belt and internal RP components must remain below the capabilities of the assembly to prevent belt slipping or premature failure. Contact Tolomatic for additional information if required.

www.tolomatic.com

The Tolomatic Difference Expect More From the Industry Leader:

Electric Linear Actuators

Pneumatic Actuators Power Transmission Products

MADE IN U.S.A.

USA - Headquarters Tolomatic Inc.

3800 County Road 116 Hamel, MN 55340, USA **Phone:** (763) 478-8000 Toll-Free: **1-800-328-2174** sales@tolomatic.com **www.tolomatic.com**

Tolomatic EXCELLENCE IN MOTION

MEXICO

Centro de Servicio Parque Tecnológico Innovación Int. 23, Lateral Estatal 431, Santiago de Querétaro, El Marqués, México, C.P. 76246 Phone: +1 (763) 478-8000 help@tolomatic.com

EUROPE

Tolomatic Europe GmbH Elisabethenstr. 20 65428 Rüsselsheim Germany Phone: +49 6142 17604-0 help@tolomatic.eu www.tolomatic.com/de-de

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV = ISO 9001 = Certified site: Hamel, MN

CHINA

Tolomatic Automation Products (Suzhou) Co. Ltd.

No. 60 Chuangye Street, Building 2 Huqiu District, SND Suzhou Jiangsu 215011 - P.R. China **Phone:** +86 (512) 6750-8506 Tolomatic_China@tolomatic.com

All brand and product names are trademarks or registered trademarks of their respective owners. Information in this document is believed accurate at time of printing. However, Tolomatic assumes no responsibility for its use or for any errors

that may appear in this document. Tolomatic reserves the right to change the design or operation of the equipment described herein and any associated motion products without notice. Information in this document is subject to change without notice.

Visit www.tolomatic.com for the most up-to-date technical information