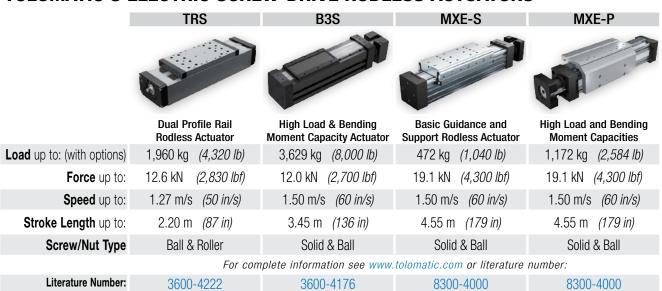


B3S & B3W ELECTRIC RODLESS ACTUATORS

LINEAR SOLUTIONS MADE EASY

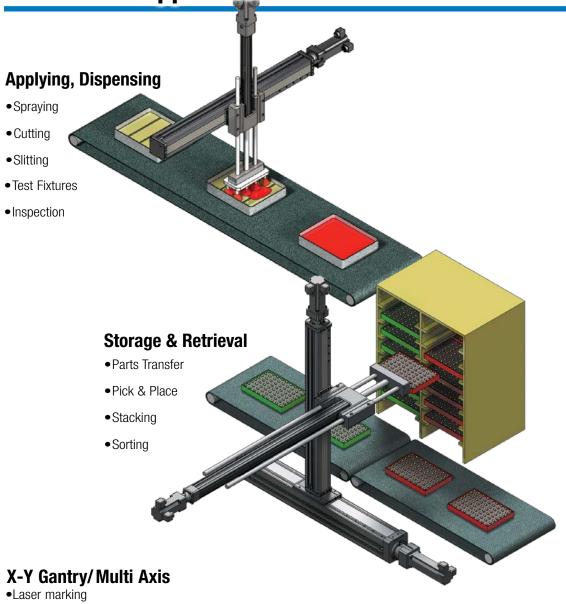

Tolomatic B3S & B3W Electric Rodless Actuators

The Power to Move Heavy Loads

The B3S and B3W electric rodless actuators have very large moment and load carrying capacities. The sealed recirculating ball bearing design makes it an excellent choice for challenging environments. For even higher capacity (loads up to 3,629 kg.) choose the Dual 180° Carrier and add an auxiliary carrier. Both actuators utilize a patented internal re-circulating ball bearing guidance system that provides extremely long life. These actuators are capable of carrying loads up to 3,629 kg [8,000 lbs].

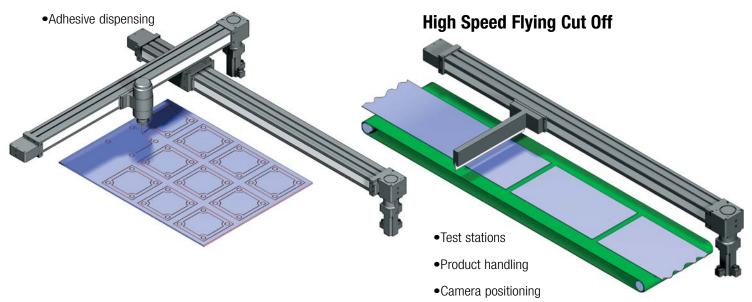
TOLOMATIC'S ELECTRIC SCREW-DRIVE RODLESS ACTUATORS

(Actuators typically can't achieve maximum load, force, and speed simultaneously. Some options may limit maximum specifications. See product brochure for details.)


TOLOMATIC'S ELECTRIC BELT-DRIVE RODLESS ACTUATORS

	B3W	MXB-U	MXB-S	MXB-P
	0	0	0	11:
	High Load & Bending Moment Capacity Actuator	Basic Thrust, Requires External Guidance and Support	Basic Guidance and Support Rodless Actuator	High Load and Bending Moment Capacities
Load up to: (with options)	3,629 kg <i>(8,000 lb)</i>	NA	472 kg <i>(1,040 lb)</i>	1,172 kg <i>(2,584 lb)</i>
Force up to:	1.4 kN <i>(325 lbf)</i>	1.9 kN <i>(418 lbf)</i>	1.9 kN <i>(418 lbf)</i>	1.9 kN <i>(418 lbf)</i>
Speed up to:	5.1 m/s (200 in/s)	5.1 m/s (200 in/s)	2.5 m/s (100 in/s)	3.9 m/s (150 in/s)
Stroke Length up to:	11.9 m <i>(470 in)</i>	10.5 m <i>(414 in)</i>	10.5 m <i>(414 in)</i>	10.5 m <i>(414 in)</i>
	For co.	mplete information see www.tolo	matic.com or literature nui	mber:
Literature Number:	3600-4176	8500-4000	8500-4000	8500-4000
(Actuatora tunically can't achie	ave maximum load force and an	and aimultaneously Come entions may l	imit mavimum appoifications Cod	product brookure for detaile)

(Actuators typically can't achieve maximum load, force, and speed simultaneously. Some options may limit maximum specifications. See product brochure for details.)



B3S & B3W Applications

CONTENTS Rodless Comparisons.....B3_2 B3S & B3W Applications B3_3 B3S Features......B3_4 B3W Features.....B3 6 B3S & B3W PerformanceB3 8 B3S SpecificationsB3_9 Critical Speed (Acme).....B3_13 PV Limits (Acme)......B3_14 Critical Speed (Ball)B3_15 Ball Screw Life......B3_16 B3S DimensionsB3_17-24 B3W Performance.....B3_25 B3W Specifications B3_27 B3W DimensionsB3 28-34 Switches B3 35 Application Data Worksheet......B3 37 Selection Guidelines.....B3_38 B3S Ordering......B3 39 B3W Ordering......B3_40 Other Tolomatic Products......B3_41

Material cutting

B3S RODLESS SCREW DRIVE ACTUATOR

ENDURANCE TECHNOLOGY

designed for maximum durability to provide extended service life.

The B3S rodless screw-drive electric actuator is designed for carrying moderate to heavy loads with large bending moment capacity. The B3S utilizes an integral recirculating ball bearing quidance system that provides durable performance and extremely long life. Choose from multiple screw technologies for thrust up 12 kN [2,700 lbf]. Built-to-order in stroke lengths up to 3.5 m [136 inches]

to the actuator body

LOAD-BEARING CARRIER DESIGN Load and moments are transmitted directly

SCREW SUPPORT BEARINGS

Unique high thrust bearing assembly design eliminates runout and isolates the linear forces from the drive shaft

YOUR MOTOR HERE

MOTOR ORIENTATION

•Inline option directly couples the

piece housing construction for optimum alignment and support of

overall length and offers a belt

driving shaft and is typically a one-

Reverse-parallel option minimizes the

reduction drive with a 1:1 or 2:1 ratio

YOU CAN CHOOSE:

the motor

Tolomatic ... MAXIMUM DURABILITY

YOU CAN CHOOSE:

- Specify the device to be installed and actuator ships with proper mounting hardware
- •Specify and ship your device to Tolomatic for factory installation
- Motor or gearbox supplied and installed by Tolomatic

Prevent contaminants from entering the sealing band area to protect internal components

FORMED END CAP WIPERS

LIGHTWEIGHT ALUMINUM DESIGN

•Black anodized extrusion design is optimized for rigidity and strength

RECIRCULATING BALL BEARING SYSTEM

Unique design incorporates hardened steel

raceways integral to the aluminum extrusion

• Bearing surfaces are adjusted at the

performance

factory for optimum preload and smooth

guidance, high efficiency and durability

• Recirculating ball bearing system provides

•External switch channels on both sides allow easy placement and adjustment of position indicating switches

OPTIONS

CARRIER OPTIONS

- AUXILIARY CARRIER doubles the load capacity and increases pitch and yaw bending moment
- DUAL 180° CARRIER doubles the load capacity, increases roll and yaw bending moment capacities and offers a wide mounting platform

MOUNTING OPTIONS

- SURFACE MOUNT two t-slots are integral on the entire underside of the actuator body for direct mounting
- •TUBE SUPPORTS provide intermediate support of the actuator body throughout long stroke lengths
- MOUNTING PLATES provide intermediate support of the actuator body throughout long stroke lengths

•METRIC OPTION

Provides metric tapped holes for mounting of load to carrier and of actuator to mating surfaces

вз 5

•SWITCHES

Styles include: reed, hall-effect or triac. Select either 5 m potted cable with flying leads or 150 mm to guickdisconnect coupler with mating 5 m cable

MULTIPLE SCREW TECHNOLOGIES

YOU CAN CHOOSE:

- Solid nuts of engineered resins offer quiet performance at the lowest cost; anti-backlash available
- Ball nuts offer positioning accuracy and repeatability with longer life: low backlash available

INTERNAL BUMPERS

Bumpers protect the screw and nut assembly from damage at end of stroke

STAINLESS STEEL SEALING BAND

- Prevents contaminants from entering the screw and nut area for extended performance
- Fatigue resistant stainless steel bands are specifically made to offer long life and will not elongate
- Provides IP44 protection for bearings and screw nut

1-800-328-2174 www.tolomatic.com

B3W RODLESS BELT-DRIVE ACTUATOR

ENDURANCE TECHNOLOGY designed for maximum durability to provide extended service life.

sm provide extended service life.

The B3W rodless belt-drive electric actuator is designed for carrying moderate to heavy loads at moderate to high speeds with large bending moment capacity. The B3W utilizes an integral recirculating ball bearing guidance system that provides durable performance and extremely long life. The B3W belt-driven actuator features speeds up to 5.1 m/ sec [200 in/sec]. Built-to-order in stroke lengths up to 11.9 m [470 inches]

YOUR MOTOR HERE

YOU CAN CHOOSE:

- •Specify the device to be installed and actuator ships with proper mounting hardware
- •Specify and ship your device to Tolomatic for factory installation
- Motor or gearbox supplied and installed by Tolomatic

OVERSIZED PULLEY BEARINGS

Drive shaft assembly incorporates sealed

ball bearings for complete support of the

increased belt tension at high speeds

STAINLESS STEEL SEALING BAND

- Prevents contaminants from entering the screw and nut area for extended performance
- Fatique resistant stainless steel bands are specifically made to offer long life and will not elongate
- Provides IP44 protection for bearings and screw nut

Tolomatic...MAXIMUM DURABILITY

LOAD-BEARING

CARRIER DESIGN

Load and moments are transmitted

directly to the

actuator body

FORMED END CAP

WIPERS

contaminants

from entering

the sealing

band area to

components

protect internal

Prevent

RECIRCULATING BALL BEARING SYSTEM

Unique design incorporates hardened steel

raceways integral to the aluminum extrusion

• Bearing surfaces are adjusted at the

factory for optimum preload and smooth

• Recirculating ball bearing system provides

guidance, high efficiency and durability

BELT TENSIONING SYSTEM

- Full access to the idle pulley allows ease of adjustment for alignment and tensioning
- Dual adjustment screws and field tensioning kit provide simple maintenance

MOTOR ORIENTATION

YOU CAN CHOOSE:

- Direct drive option directly couples the driving shaft and is typically a one-piece housing construction for optimum alignment and support of the motor
- •Reduction drive option minimizes the overall length and offers a belt reduction drive with a 1:1 or 2:1 ratio

LIGHTWEIGHT ALUMINUM DESIGN

- •Black anodized extrusion design is
- •External switch channels on both sides allow easy placement and adjustment of position indicating switches

INTERNAL **BUMPERS**

Bumpers protect the screw and nut assembly from damage at end of stroke

MULTIPLE BELT TECHNOLOGIES

YOU CAN CHOOSE:

- Polyurethane steel-cord reinforced HTD style belt (standard)
- •Polyurethane Kevlar reinforced HTD style belt

Tolomatic

CARRIER OPTIONS • AUXILIARY CARRIER doubles the load capacity

and increases pitch and yaw bending moment

 DUAL 180° CARRIER doubles the load capacity, increases roll and yaw bending moment capacities and offers a wide mounting platform

MOUNTING OPTIONS

- SURFACE MOUNT two t-slots are integral on the entire underside of the actuator body for direct mounting
- •TUBE SUPPORTS provide intermediate support of the actuator body throughout long stroke lengths
- MOUNTING PLATES provide intermediate support of the actuator body throughout long stroke lengths

METRIC OPTION

Provides metric tapped holes for mounting of load to carrier and of actuator to mating surfaces

• SWITCHES

Styles include: reed, hall-effect or triac. Select either 5 m potted cable with flying leads or 150 mm to quickdisconnect coupler with mating 5 m cable

optimized for rigidity and strength

OPTIONS

1-800-328-2174 www.tolomatic.com

1-800-328-2174 www.tolomatic.com

B3S & B3W Electric Rodless Actuators

SPECIFICATIONS both Screw & Belt Drive

sizeit.tolomatic.com for fast. accurate actuator selection

DYNAMIC BENDING MOMENTS AND LOADS

				METRIC		U.S. 0	ONVENTI	ONAL
SINGLE (STANDARD) CARRIER		Size	10	15	20	10	15	20
Fz 1	Mx Moment (Roll)	(N-m:lb-in)	28.2	97	188	250	859	1,662
Fy Mz	My Moment (Pitch)	(N-m : lb-in)	30.4	117	166	269	1,033	1,472
My	Mz Moment (Yaw)	(N-m: lb-in)	17.6	67	96	156	596	850
Mx	Fy Load (Radial)	(N : lb)	1,517	3,737	5,155	341	840	1,159
	Fz Load (Lateral)	(N : lb)	2,629	6,468	8,932	591	1454	2008
AUXILIARY CARRIER: Increases rigidity, load-ca	rrying capacity and m	oments Size	10	15	20	10	15	20
Fz 1	Mx Moment (Roll)	*(N-m : lb-in)	57	194	376	500	1,718	3,324
Fy	My Moment (Pitch)	*(N-m : lb-in)	319	1,326	1,838	2,825	11,734	16,265
My	Mz Moment (Yaw)	*(N-m : lb-in)	184	766	1,061	1,630	6,779	9,388
Mx	Fy Load (Radial)	(N : lb)	3,034	7,473	10,311	682	1,680	2,318
, D	Fz Load (Lateral)	(N : lb)	5,258	12,935	17,864	1,182	2,908	4,016
	Minimum Dimension	1 'D' (mm : in)	124	205	206	4.88	8.07	8.10
DUAL 180° CARRIER: Allows 90° rotation of load,	adds load bearing su	rface Size	10	15	20	10	15	20
Fz ↑	Mx Moment (Roll)	(N-m : lb-in)	74	279	512	657	2,468	4,527
Fy Mz	My Moment (Pitch)	(N-m : lb-in)	35.3	135	192	312	1,192	1,700
My	Mz Moment (Yaw)	(N-m : lb-in)	61	233	333	538	2,066	2,944
MX Z	Fy Load (Radial)	(N : lb)	5,258	12,935	17,864	1,182	2,908	4,016
	Fz Load (Lateral)	(N : lb)	3,034	7,473	10,311	682	1,680	2,318
AUXILIARY DUAL 180° CARRIER: Substantially in	creases moment and	loads Size	10	15	20	10	15	20
Fz ‡	Mx Moment (Roll)	* (N-m : lb-in)	149	558	1,023	1,314	4,936	9,054
Fy Mz	My Moment (Pitch)	* (N-m : lb-in)	376	1,532	2,121	3,328	13,558	18,776
Mx 7	Mz Moment (Yaw)	* (N-m : lb-in)	652	2,652	3,675	5,768	23,468	32,530
""	Fy Load (Radial)	(N : lb)	10,516	25,871	35,728	2,364	5,816	8,032
	Fz Load (Lateral)	(N : lb)	6,067	14,946	20,622	1,364	3,360	4,636
	Minimum Dimension	1 'D' (mm : in)	124	205	206	4.88	8.07	8.10

The Dual 180° carrier requires its own proprietary tube supports and foot mounts. See dimensional information. Breakaway torque will also increase when using the Auxiliary carrier or the Dual 180° carrier options. When ordering, determine working stroke and enter this value into the configuration string. Overall actuator length will automatically be calculated.

Deflection Considerations: In applications where substantial Mx or My moments come into play, deflection of the cylinder tube, carrier and supports must be considered. The deflection factors shown in the Load Deflection charts on the following page are based on cylinder mounted with tube supports at minimum recommended spacing. If more rigidity is desired, refer to the Auxiliary or Dual Carrier options.

*Loads shown in table are at minimum "D" dimension, for ratings with longer "D" dimension see graphs on page B3_10.

Life of the actuator will vary for each application depending on the combined loads, motion parameters and operating conditions. The load factor (L_r) ratios for each application must not exceed a value of 1.5 (see formula at right). Exceeding a load factor

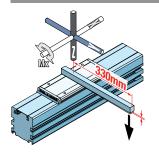
 $L_F = \frac{Mx}{Mx_{max}} + \frac{My}{My_{max}} + \frac{Mz}{Mz_{max}} + \frac{Fy}{Fy_{max}} + \frac{Fz}{Fz_{max}} \le 1.5$

With combined loads, L must not exceed the

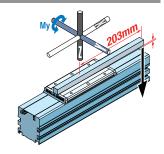
of 1.5 will diminish the actuator's rated life.

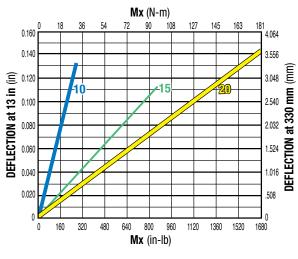
B3S & B3W Electric Rodless Actuators

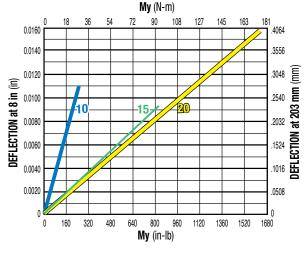
SPECIFICATIONS both Screw & Belt Drive


sizeit.tolomatic.com for fast, accurate actuator selection

LOAD DEFLECTION

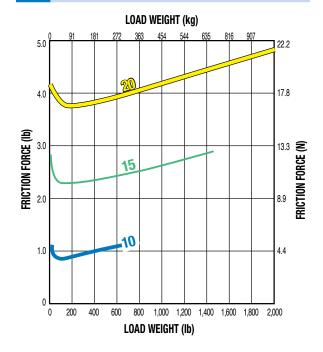

DEFLECTION ABOUT X AXIS


DEFLECTION ABOUT Y AXIS



$\label{eq:deflection} \textbf{DEFLECTION TESTING WAS DONE UNDER THESE CRITERIA:}$

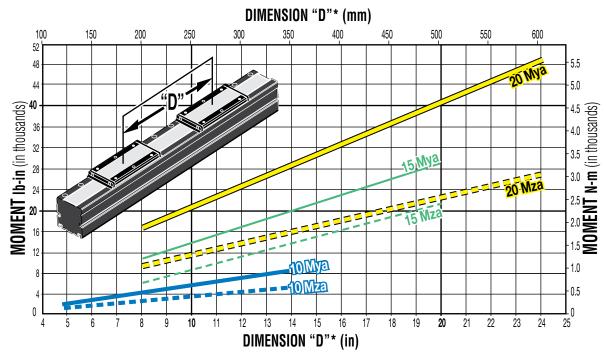
- 1.) Actuator was properly mounted with distance between supports within recommendations (see Support Recommendations below)
- 2.) Deflection was measured from center of carrier as shown (Mx = 330mm, My = 203mm)



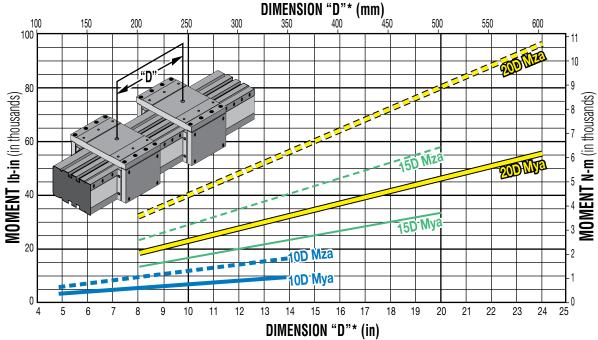
SUPPORT RECOMMENDATIONS

MAX DISTANCE BETWEEN SUPPORTS (mm) "L" 2,100 MAXIMUM LOAD 1,800 MAXIMUM LOAD MAXI

FRICTION FORCE



SPECIFICATIONS both Screw & Belt Drive


sizeit.tolomatic.com for fast, accurate actuator selection

AUXILIARY CARRIER: BENDING MOMENT AT 'D' DISTANCE

AUXILIARY DUAL 180° CARRIER: BENDING MOMENT AT 'D' DISTANCE

Rates shown on both graphs were calculated with these assumptions: 1.) Coupling between carriers is rigid.

- * Customer must specify Dimension "D" (Distance between carrier center lines) when ordering.
- 2.) Load is equally distributed between carriers.
- 3.) Coupling device applies no misalignment loads to carriers.

Life of the actuator will vary for each application depending on the combined loads, motion parameters and operating conditions. The load factor (L_F) ratios for each application must not exceed a value of 1.5 (see formula at right). Exceeding a load factor of 1.5 will diminish the actuator's rated life. $L_F = \frac{Mx}{Mx_{max}} + \frac{My}{My_{max}} + \frac{Mz}{Mz_{max}} + \frac{Fy}{Fy_{max}} + \frac{Fz}{Fz_{max}} \le 1.5$

With combined loads, L_F must not exceed the value 1.5

SPECIFICATIONS Related to Actuator Size and Screw Selection

METRIC LEAD SCREWS

B3S	MAX STROKE	SCREW	SCREW LEAD	MAX Thrust	LEAD Accuracy	BACKLASH	SCREW DIAMETER	BASE ACTUATOR INERTIA LMI	BASE ACTUATOR INERTIA RP	INERTIA PER mm OF STROKE	MAXIMUM DYNAMIC FRICTION TORQUE
SIZE	mm	TYPE	mm/rev	N	mm/300mm	mm	mm	kg-cm ²	kg-cm ²	kg-cm ²	Nm
10	1,630	BNM10	10.00	1,832	0.10	0.06	10.0	0.010	0.012	0.0001	0.13
15	3,388	BNM05	5.00	7,300	0.05	0.05	16.0	0.047	0.055	0.0005	0.27
20	3,337	BNM05	5.00	11,700	0.05	0.06	20.0	0.322	0.342	0.0011	0.25

INCH (US Conventional) LEAD SCREWS

					011 (00 001110						
B3S	MAX Stroke	SCREW	SCREW LEAD	MAX Thrust	LEAD ACCURACY	BACKLASH	SCREW Diameter	BASE ACTUATOR INERTIA LMI	BASE ACTUATOR INERTIA RP	INERTIA PER in OF STROKE	MAXIMUM Dynamic Friction Torque
SIZE	in	TYPE	turns/in	lbf	in/ft	in	in	lb-in ²	lb-in ²	lb-in ²	lb-in
	64.2	BN(L)08	8.00	130	0.0040	0.015	0.375	0.003	0.004	0.0005	1.1
	136.2	SN05	5.00	170	0.0060	0.007	0.500	0.011	0.014	0.0017	1.3
10	134.2	SN02	2.00	170	0.0050	0.007	0.500	0.016	0.019	0.0017	1.8
	134.2	SNA02	2.00	170	0.0050	0.003	0.500	0.019	0.022	0.0017	1.8
	100.2	SN01	1.00	170	0.0060	0.007	0.500	0.032	0.035	0.0017	2.5
	61.4	BN(L)02	2.00	800	0.0030	0.015	0.500	0.025	0.028	0.0017	1.6
	61.4	BN(L)05	5.00	800	0.0030	0.015	0.625	0.040	0.047	0.0042	1.3
15	133.4	SN02	2.00	200	0.0050	0.007	0.625	0.048	0.055	0.0042	1.9
	133.4	SNA02	2.00	200	0.0050	0.003	0.625	0.048	0.055	0.0042	1.9
	133.4	SN01	1.00	300	0.0050	0.007	0.750	0.119	0.133	0.0087	2.8
20	131.4	BN(L)02	2.00	2,700	0.0040	0.015	0.750	0.116	0.122	0.0087	3.1
20	131.4	BN(L)05	5.00	950	0.0030	0.015	0.750	0.105	0.111	0.0087	2.2

⁽L) for low backlash ball screws: backlash = 0.0020"

SCREW CODE DESCRIPTION

SN Solid Nut

SNA Anti-backlash Solid Nut

BN Ball Nut

BNL Low-Backlash Ball Nut

Contact Tolomatic for higher accuracy and lower backlash options.

For ball screws, maximum thrust reflects 90% reliability for 25 million linear millimeters of travel.

^{*} For Acme screws, maximum thrust is the maximum continuous dynamic thrust subject to Thrust x Velocity limitation.

SPECIFICATIONS

sizeit.tolomatic.com for fast, accurate actuator selection

METRIC

	WEI	GHT	WEIGHT PER	¹ STRAIGHTNESS &	² TEMPERATURE	
	CARRIER	BASE	UNIT OF STROKE	FLATNESS (supported)	RANGE	
	(kg)	(kg)	(g/mm)	(mm)	(°C)	³ IP RATING
B3S10	0.40	1.00	5.40			
B3S15	0.70	3.96	10.18	0.00067 x L*	4 - 54	44
B3S20	0.97	6.52	15.73			

	WEI	GHT	WEIGHT PER
	CARRIER	BASE	UNIT OF STROKE
	(kg)	(kg)	(g/mm)
B3S10D	1.05	2.31	7.32
B3S15D	2.93	6.53	12.14
B3S20D	4.83	13.36	23.30

- ¹The listed values relating to straightness/flatness are intended for reference purposes only, and not as an engineering standard of absolute tolerance for a given actuator. Appropriate installation is the single most important factor in reducing such deviation, so good engineering practices such as measurement, mapping, etc. must be employed in applications with stringent straightness/flatness requirements.
- ² Heat generated by the motor and drive should be taken into consideration as well as linear velocity and work cycle time. For applications that require operation outside of the recommended temperature range, contact the factory.

INCH (US Conventional)

	WEI	GHT	WEIGHT PER	¹ STRAIGHTNESS &	² TEMPERATURE	
	CARRIER	BASE	UNIT OF STROKE		RANGE	
	(lbs)	(lbs)	(lbs/in)	(in)	(°F)	³ IP RATING
B3S10	0.85	2.15	0.30			
B3S15	1.56	8.75	0.57	0.00067 x L*	40 - 130	44
B3S20	2.15	14.38	0.88			

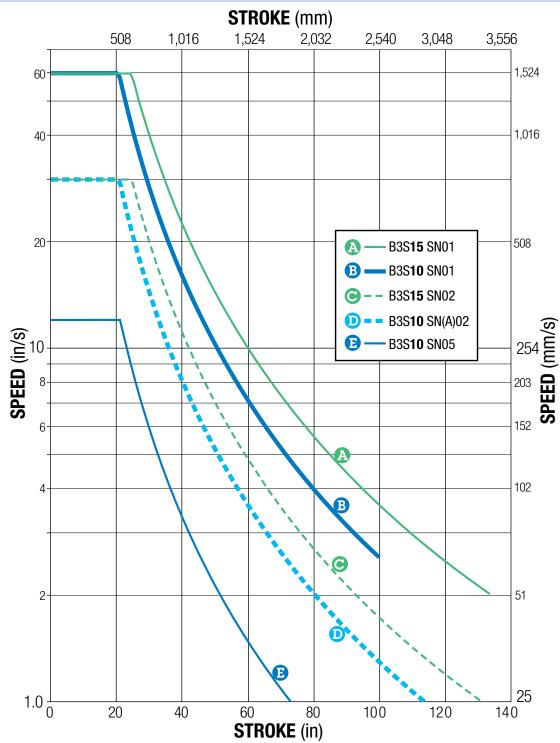
	WEI	GHT	WEIGHT PER	
	CARRIER	BASE	UNIT OF STROKE	
	(lbs)	(lbs)	(lbs/in)	
B3S10D	2.32	5.10	0.41	
B3S15D	6.47	14.40	0.68	
B3S20D	10.65	29.45	1.31	

- 3 Protected against ingress of solid particles greater than .039 in (1mm) and splashing water.
- *"L" is maximum distance between supports— See the support recommendation graph on page B3_9.

LARGE FRAME MOTORS AND SMALLER SIZE ACTUATORS: Cantilevered motors need to be supported, if subjected to continuous rapid reversing duty and/or under dynamic conditions.

LEAD SCREW EFFICIENCY

SCREW/NUT		SIZE	
STYLE	10 15		20
Composite (ACME)		0.60	
Ball		0.90	
Ball Low Backlash		0.85	



ACME SCREW/NUT COMBINATIONS

sizeit.tolomatic.com for fast, accurate actuator selection

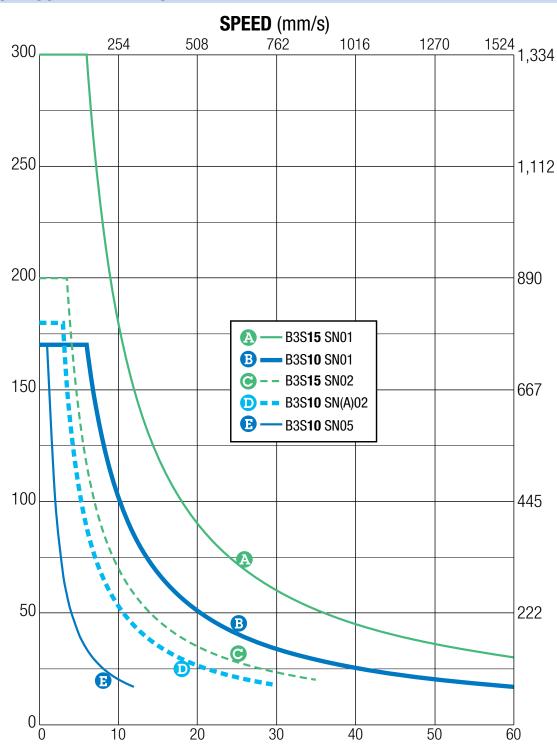
ACME SCREW CRITICAL SPEED CAPACITIES

* Maximum thrust is the maximum continuous dynamic thrust subject to Thrust x Velocity limitation.

Dotted lines represent maximum stroke for screw selections.

For Screw PV limits, refer to the individual charts located in the technical section for each actuator body size.

SCREW CODE DESCRIPTION SN **Solid Nut SNA Anti-backlash Solid Nut**



ACME SCREW/NUT COMBINATIONS

sizeit.tolomatic.com for fast, accurate actuator selection

ACME SCREW PV LIMITS

* Maximum thrust is the maximum continuous dynamic thrust subject to Thrust x Velocity Limitation.

PV LIMITS: Any material which carries a sliding load is limited by heat buildup. The factors that affect heat generation rate in an application are the pressure on the nut in pounds per square inch and the surface velocity in feet per minute. The product of these factors provides a measure of the severity of an application.

$$\left(\frac{\text{Thrust}}{\text{(Max. Thrust Rating)}}\right) \times \left(\frac{\text{Speed}}{\text{(Max. Speed Rating)}}\right) \leq 0.1$$



BALL SCREW/NUT COMBINATIONS

sizeit.tolomatic.com for fast, accurate actuator selection

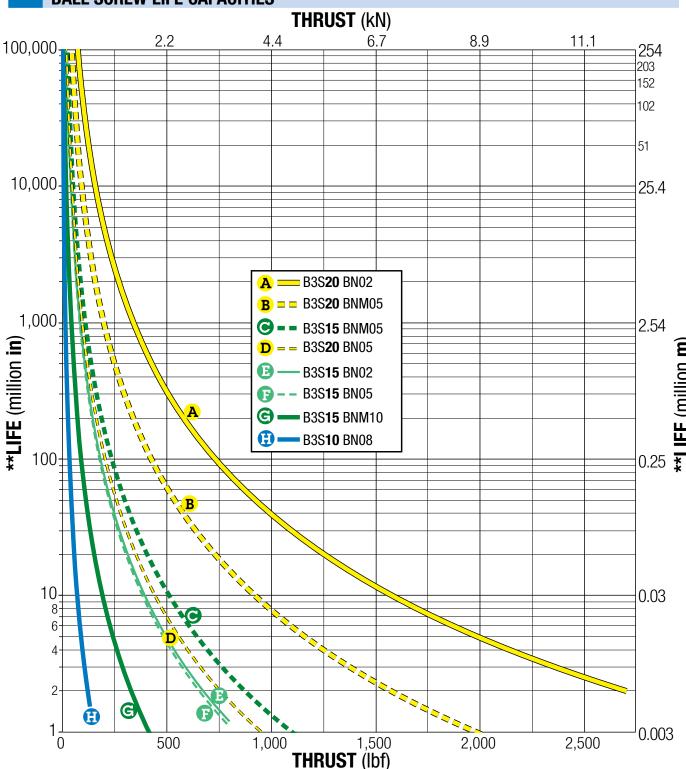
BALL SCREW CRITICAL SPEED CAPACITIES

* Maximum thrust reflects 90% reliability for 25 million linear millimeters of travel.

Dotted lines represent maximum stroke for screw selections.

SCREW CODE DESCRIPTION BN/BNM **Ball Nut**

BNL Low-Backlash Ball Nut

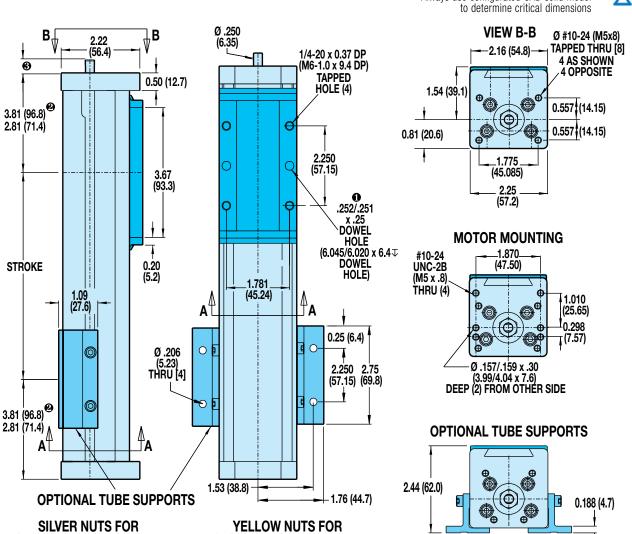


BALL SCREW/NUT COMBINATIONS

sizeit.tolomatic.com for fast, accurate actuator selection

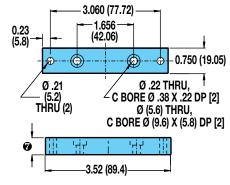
* Maximum thrust reflects 90% reliability for 25 million linear millimeters of travel.

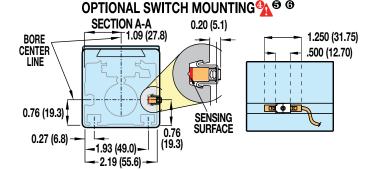
Dotted lines represent maximum thrust for screw selections.


**Life indicates theoretical maximum life of screw only, under ideal conditions and does not indicate expected life of actuator.

DIMENSIONS Actuator & Options

3D CAD available at www.tolomatic.comAlways use configurated CAD solid model




SILVER NUTS FOR SLOTS 90° FROM CARRIER #3410-1013 [4410-1013]

Ø#10-24 (M5-0.8) TAPPED HOLE (CENTERED) 0.66 (16.8) 0.25 (6.4)

YELLOW NUTS FOR SLOTS OPPOSITE CARRIER #3410-1775 [4410-1708]

OPTIONAL MOUNTING PLATES

- **●** DOWEL PINS | .003 (08mm) | M
- SHAFT LENGTH
 In-line mounting
 0.55 (13.8)

 Extended shaft for RP & 23-frame motor
 1.99 (50.5)

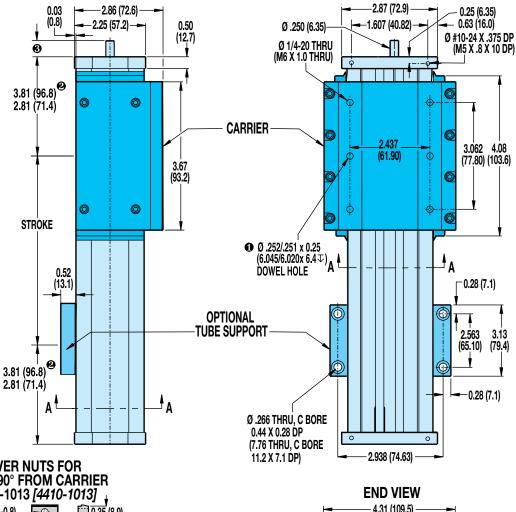
 Extended shaft for RP & 34-frame motor
 2.20 (55.9)

 Extended shaft for purchases prior to 6/24/02
 1.63 (41.4)

CAUTION: DO NOT OVERTIGHTEN SWITCH HARDWARE WHEN INSTALLING

- NOTE: The scored face of the switch indicates the sensing surface and must face toward the magnet
- NOTE: Some actuators require switch mounting on a specific side of the actuator. Call Tolomatic 1-800-328-2174 for details
- LMI with MRS is 1" (25.4mm) thick LMI with all others is 1/2" (12.7mm) thick RP, (YMH) all motors is 1/2" (12.7mm) thick

Unless otherwise noted, all dimensions shown are in inches (Dimensions in parenthesis are in millimeters)



DIMENSIONS Dual 180° Option

3D CAD available at www.tolomatic.com

Always use configurated CAD solid model to determine critical dimensions

SILVER NUTS FOR **SLOTS 90° FROM CARRIER** #3410-1013 [4410-1013]

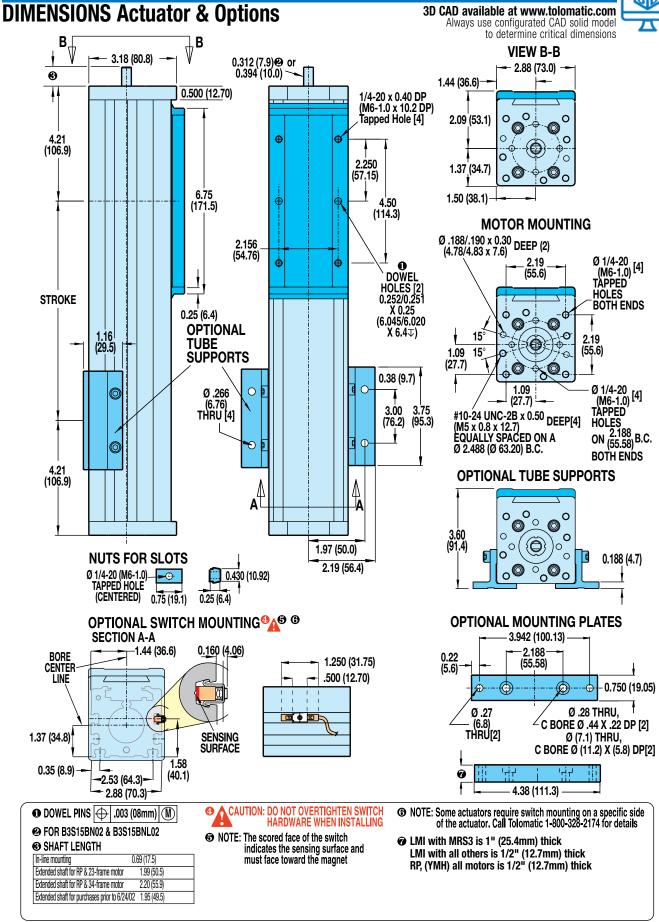
Ø#10-24 (M5-0.8) TAPPED HOLE 0.35 (8.9) (CENTERED) 0.66 (16.8) 0.25 (6.4)

SECTION A-A 0.20 SENSING SURFACE (5.1)1.250 (31.75) 0.76 (19.3) .500 (12.70) 1.09 (27.8)

4.31 (109.5) -1.114 -(28.30)0.14 (3.6) 2.83 2.25 (71.8) (57.2) 0 (45.09)0 -o` Ø #10-24 THRU (37.1)(M5 X 0.8 THRU) [8] 2.18 (55.5) 4 AS SHOWN, 4 OPPOSITE

BORE CENTER LINE

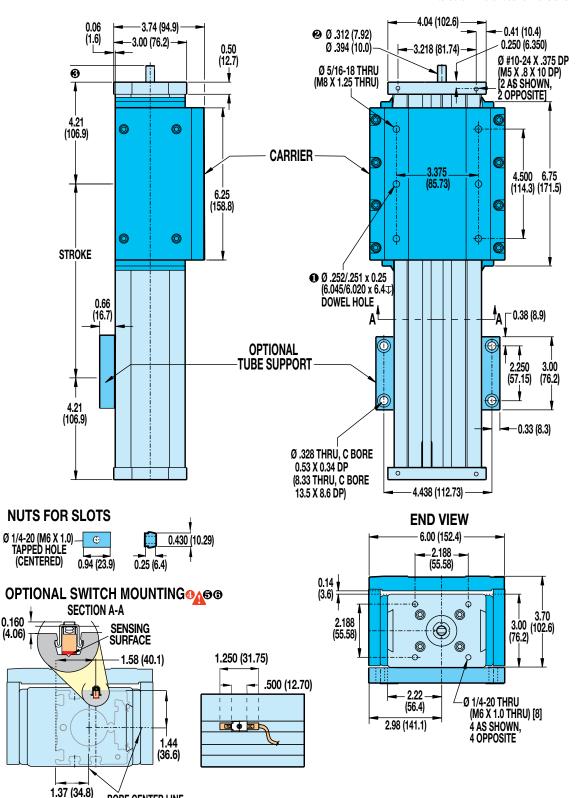
0.76 (19.3)


SHAFT LENGTH 0.55 (13.8) In-line mounting Extended shaft for RP & 23-frame motor 1.99 (50.5) Extended shaft for RP & 34-frame motor 2.20 (55.9) Extended shaft for purchases prior to 6/24/02 1.63 (41.4)

CAUTION: DO NOT OVERTIGHTEN SWITCH HARDWARE WHEN INSTALLING

6 NOTE: The scored face of the switch indicates the sensing surface and must face toward the magnet

NOTE: Some actuators require switch mounting on a specific side of the actuator. Call Tolomatic 1-800-328-2174 for details



Unless otherwise noted, all dimensions shown are in inches (Dimensions in parenthesis are in millimeters)

Always use configurated CAD solid model to determine critical dimensions

|⊕| .003 (08mm)| M

◆ FOR B3S15BN02 & B3S15BNL02

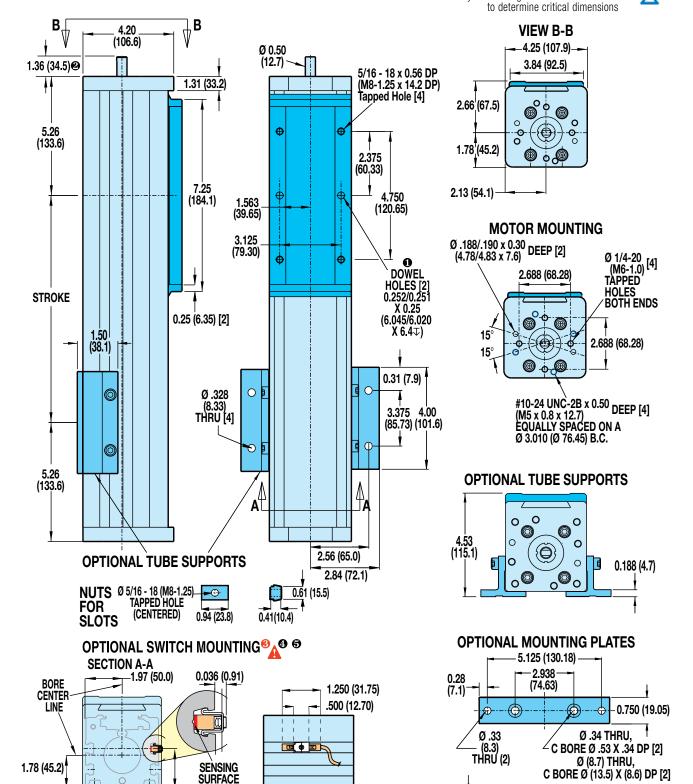
SHAFT LENGTH

BORE CENTER LINE

0.69 (17.5) In-line mounting Extended shaft for RP & 23-frame motor 1.99 (50.5) 2.20 (55.9) Extended shaft for RP & 34-frame motor Extended shaft for purchases prior to 6/24/02 1.95 (49.5)

CAUTION: DO NOT OVERTIGHTEN SWITCH HARDWARE WHEN INSTALLING

6 NOTE: The scored face of the switch indicates the sensing surface and must face toward the magnet


ONOTE: Some actuators require switch mounting on a specific side of the actuator. **Call Tolomatic** 1-800-328-2174 for details

DIMENSIONS Actuator & Options

3D CAD available at www.tolomatic.comAlways use configurated CAD solid model

-3.44 (87.3)-

-3.94 (100.0)

2.14 (54.4)

CAUTION: DO NOT OVERTIGHTEN SWITCH HARDWARE WHEN INSTALLING

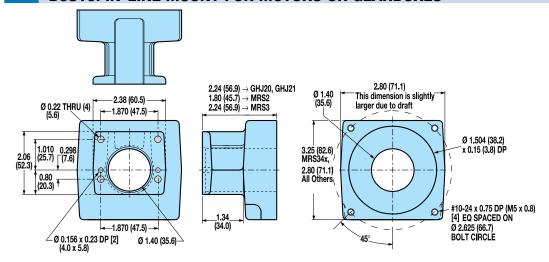
NOTE: The scored face of the switch indicates the sensing surface and must face toward the magnet NOTE: Some actuators require switch mounting on a specific side of the actuator. Call Tolomatic 1-800-328-2174 for details

5.69 (144.5)

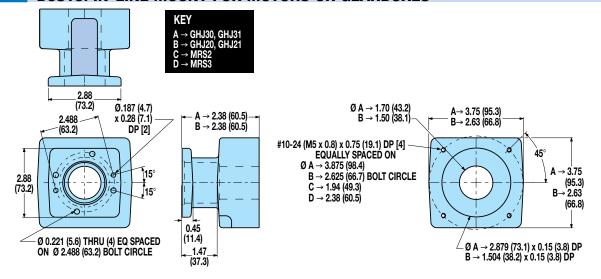
0.50 (12.7)

0.50 (12.7)-

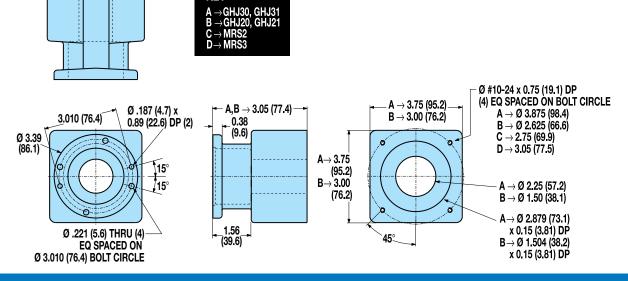
DIMENSIONS Dual 180° Option 3D CAD available at www.tolomatic.com Always use configurated CAD solid model to determine critical dimensions 4.83 (122.7)-5.25 (133.4) (4.1)4.25 (108.0) - Ø .500 (12.70) 0.66 (16.8) 1.31 (33.3) -3.845 (97.66) Ø 1/4-20 X 0.50 DP Ø 3/8-16 THRU 1.36 (34.5) (M6 X 1.0 X 12 DP) (M10 X 1.5 THRU) 5.26 (133.6) 0 **CARRIER** .5.125 6.000 7.25 (152.40) (184.2) (130.18)6.75 (171.5) 0 0 ф **STROKE** ① Ø .252/.251 x 0.25 (6.045/6.020 x 6.4↓ DOWEL HOLE 0.62 -0.38(8.9)(15.9)**OPTIONAL** TUBE SUPPORT 2.250 3.00 (76.2) (57.15) 5.26 (133.6)0.38 (8.9) Ø .391 THRU, C BORE 0.63 X 0.41 DP (9.93 THRU, C BORE 5.25 (133.4) 16.0 X 10.4 DP) **NUTS FOR SLOTS** Ø 5/16-18 (M8 X 1.25)-TAPPED HOLE **END VIEW** 0.61 (15.5) 7.41 (188.2) (CENTERED) 0.94 (23.9) 2.688 (68.28) OPTIONAL SWITCH MOUNTING ® ♠ ⊕ ⊕ .<u>o</u>.<u></u>6. **SECTION A-A** 4.80 4.25 (121.9) (108.0) 0.036 (0.91) 2.688 (68.28) SENSING SURFACE .^{О.}Ф.О 2.14 (54.4) 1.250 (31.75) .500 (12.70) 2.42 (61.5)3.50 (88.9) 1.97 (50.0)1.78 (45.2) **BORE CENTER LINE ❸ A**CAUTION: DO NOT OVERTIGHTEN SWITCH **NOTE:** Some actuators require switch mounting ● DOWEL PINS | .003 (08mm) | M HARDWARE WHEN INSTALLING on a specific side of the actuator. Call **❷ FOR EXTENDED SHAFT 2.11 (53.6)** NOTE: The scored face of the switch Tolomatic 1-800-328-2174 for details indicates the sensing surface and must face toward the magnet


DIMENSIONS Actuator & Options

3D CAD available at www.tolomatic.com


Always use configurated CAD solid model to determine critical dimensions

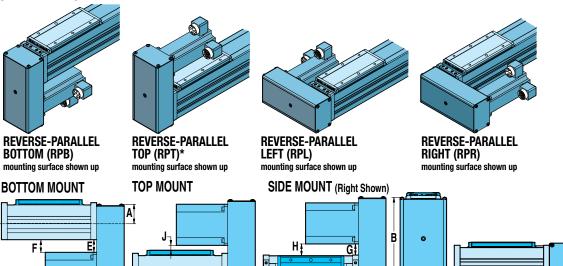
B3S10: IN-LINE MOUNT FOR MOTORS OR GEARBOXES



B3S15: IN-LINE MOUNT FOR MOTORS OR GEARBOXES

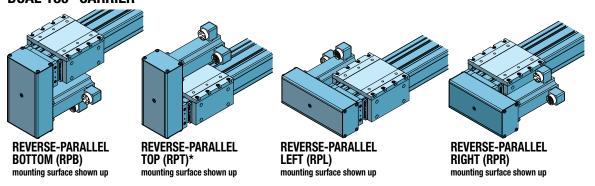
B3S20: IN-LINE MOUNT FOR MOTORS OR GEARBOXES

KEY



DIMENSIONS Reverse Parallel Mounting

3D CAD available at www.tolomatic.comAlways use configurated CAD solid model to determine critical dimensions



STANDARD CARRIER

DUAL 180° CARRIER

-- C--

Reduction Drive Weight

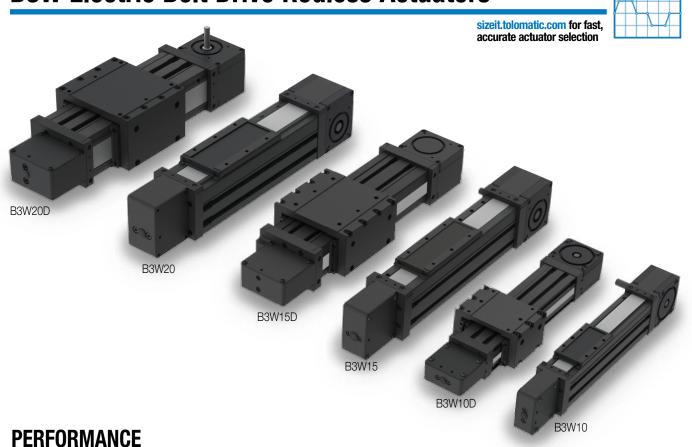
		kg	lb
10	1:1 & 2:1 Ratio	0.93	2.06
15	1:1 Ratio	0.98	2.17
15	2:1 Ratio	1.09	2.40
	1:1 Ratio	1.39	3.07
20	2:1 Ratio	1.47	3.23
20	1:1 Ratio	1.42	3.13
	2:1 Ratio	1.49	3.29

Reduction Inertia at Motor Shaft

		kg-cm ²	lb-in ²
10	1:1 Ratio	0.2559	0.0875
10	2:1 Ratio	0.3291	0.1125
15	1:1 Ratio	0.2043	0.0700
13	2:1 Ratio	0.2767	0.0950
20	1:1 Ratio	0.3447	0.1180
20	2:1 Ratio	0.2928	0.1000

Reduction Efficiency: 0.95

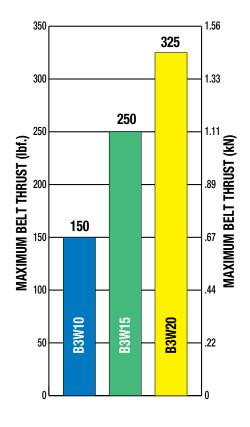
*▲ NOTE: RPT is generally not
recommended because the load
may interfere with the motor. Stops
or spacers may be required.


	Frame Size	A	В	C	D	E	F	G	Н	J
10	23	42.6	178.6	54.0	82.6	45.6	46.8	37.6	38.4	26.9
15	23	36.6	191.3	54.0	82.6	44.1	44.1	40.8	42.3	25.3
13	34	53.8	208.6	60.3	101.6	27.7	27.7	24.4	25.9	8.9
20	23	63.8	238.4	60.3	101.6	59.5	59.6	50.8	54.7	37.2
20	34	63.8	251.5	60.3	101.6	43.2	43.2	34.4	38.4	20.9

Dimensions in millimeters

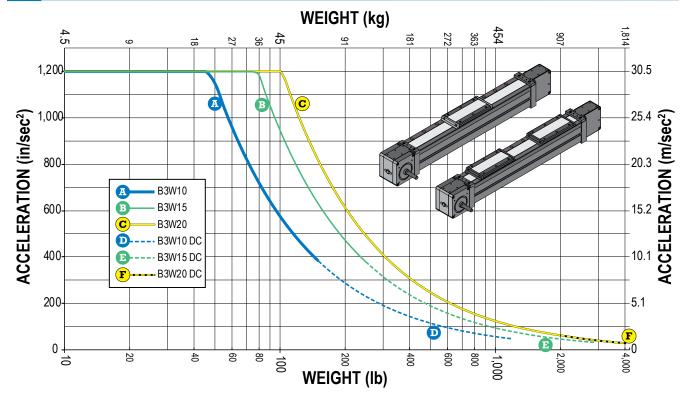
Tolomatic

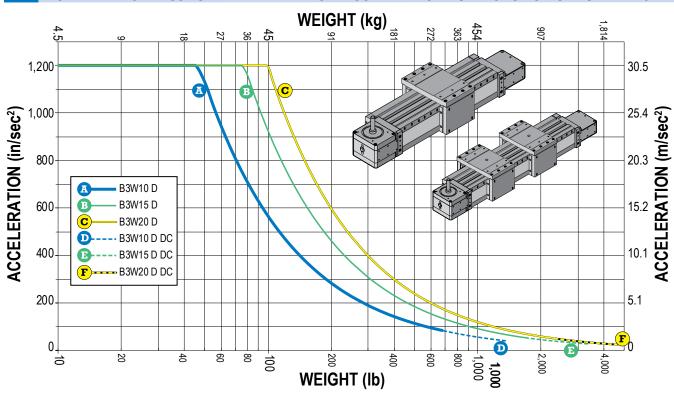
	Frame Size	A	В	C	D	E	F	G	Н	J
10	23	1.68	7.03	2.13	3.25	1.80	1.84	1.48	1.51	1.06
15	23	1.44	7.53	2.13	3.25	1.74	1.74	1.61	1.67	1.00
13	34	2.12	8.21	2.38	4.00	1.09	1.09	0.96	1.02	0.35
20	23	2.51	9.38	2.38	4.00	2.34	2.35	2.00	2.16	1.47
20	34	2.51	9.90	2.38	4.00	1.70	1.70	1.36	1.51	0.82


Dimensions in inches

CARRIER SPEED CAPABILITIES

2,500 1,500 1,500 1,500 1,500 1,500 1,500 1,000


MAXIMUM BELT THRUST


PERFORMANCE

sizeit.tolomatic.com for fast. accurate actuator selection

B3W STANDARD CARRIER - MAXIMUM ACCELERATION AS A FUNCTION OF LOAD WEIGHT

B3W WITH DUAL 180° CARRIER - MAXIMUM ACCELERATION AS A FUNCTION OF LOAD WEIGHT

SPECIFICATIONS

sizeit.tolomatic.com for fast, accurate actuator selection

METRIC

INCH (U.S. Conventional)

			B3W10	B3W15	B3W20		B3W10	B3W15	B3W20
	Max. Stroke	mm	11,938	10,566	8,128	in	470	416	320
	Max. Velocity	m/sec	5.08	5.08	5.08	in/sec	200	200	200
	Max. Acceleration	m/sec ²	30.48	30.48	30.48	in/sec²	1,200	1,200	1,200
	Max. Input Torque	N-m	8.5	21.2	32.2	lb-in	75.2	188.0	285.0
e	Standard (single) Carrier	N-m	1.06	1.41	3.18	lb-in	9.38	12.5	28.13
Break- away Torque	Dual 180° or Aux. Carrier	N-m	1.34	1.69	3.53	lb-in	11.88	15	31.25
8 ° E	Dual 180 & Aux Carrier	N-m	1.91	2.82	5.37	lb-in	16.88	25	47.5
	Pulley Pitch Dia.	mm	25.48	38.2	44.55	in	1.003	1.504	1.754
	Stroke per Rev.	mm/rev	80.04	120.02	139.95	in/rev	3.151	4.725	5.51
	·								
Repeatability mm									
	Repeatability	mm	+/- 0.05	+/- 0.05	+/- 0.05	in	+/- 0.002	+/- 0.002	+/- 0.002
	Repeatability Straightness & Flatness ¹	mm mm	+/- 0.05 0.017 x L*	+/- 0.05 0.017 x L*	+/- 0.05 0.017 x L*		+/- 0.002 0.00067 x L*		
	Straightness & Flatness ¹	mm	0.017 x L*	0.017 x L*	0.017 x L*	in	0.00067 x L*	0.00067 x L*	0.00067 x L*
	Straightness & Flatness ¹ Temp. Range ²	°C	0.017 x L* 4 - 54	0.017 x L* 4 - 54	0.017 x L*	in °F	0.00067 x L* 40 - 130	0.00067 x L* 40 - 130	0.00067 x L*
	Straightness & Flatness ¹ Temp. Range ²	°C	0.017 x L* 4 - 54	0.017 x L* 4 - 54	0.017 x L*	in °F	0.00067 x L* 40 - 130	0.00067 x L* 40 - 130	0.00067 x L*
	Straightness & Flatness ¹ Temp. Range ² IP Rating ³	°C IP	0.017 x L* 4 - 54 44	0.017 x L* 4 - 54 44	0.017 x L* 4 - 54 44	in °F IP	0.00067 x L* 40 - 130 44	0.00067 x L* 40 - 130 44	0.00067 x L* 40 - 130 44
	Straightness & Flatness¹ Temp. Range² IP Rating³ Inertia (zero stroke)	mm °C IP	0.017 x L* 4 - 54 44 0.833	0.017 x L* 4 - 54 44 4.073	0.017 x L* 4 - 54 44 7.786	in °F IP	0.00067 x L* 40 - 130 44 0.2846	0.00067 x L* 40 - 130 44 1.3917	0.00067 x L* 40 - 130 44 2.6607
	Straightness & Flatness¹ Temp. Range² IP Rating³ Inertia (zero stroke) Inertia (per unit of stroke)	mm °C IP kg-cm²/mm	0.017 x L* 4 - 54 44 0.833 0.00018	0.017 x L* 4 - 54 44 4.073 0.0002	0.017 x L* 4 - 54 44 7.786 0.00131	in °F IP Ib-in² Ib-in²/in	0.00067 x L* 40 - 130 44 0.2846 0.0016	0.00067 x L* 40 - 130 44 1.3917 0.0017	0.00067 x L* 40 - 130 44 2.6607 0.0114
	Straightness & Flatness¹ Temp. Range² IP Rating³ Inertia (zero stroke) Inertia (per unit of stroke) Inertia of pulley	mm °C IP kg-cm² kg-cm²/mm kg-cm²	0.017 x L* 4 - 54 44 0.833 0.00018 0.027	0.017 x L* 4 - 54 44 4.073 0.0002 0.219	0.017 x L* 4 - 54 44 7.786 0.00131 0.422	in °F IP Ib-in² Ib-in²/in Ib-in²	0.00067 x L* 40 - 130 44 0.2846 0.0016 0.0093	0.00067 x L* 40 - 130 44 1.3917 0.0017 0.0748	0.00067 x L* 40 - 130 44 2.6607 0.0114 0.1441
	Straightness & Flatness¹ Temp. Range² IP Rating³ Inertia (zero stroke) Inertia (per unit of stroke) Inertia of pulley	mm °C IP kg-cm² kg-cm²/mm kg-cm²	0.017 x L* 4 - 54 44 0.833 0.00018 0.027	0.017 x L* 4 - 54 44 4.073 0.0002 0.219	0.017 x L* 4 - 54 44 7.786 0.00131 0.422	in °F IP Ib-in² Ib-in²/in Ib-in²	0.00067 x L* 40 - 130 44 0.2846 0.0016 0.0093	0.00067 x L* 40 - 130 44 1.3917 0.0017 0.0748	0.00067 x L* 40 - 130 44 2.6607 0.0114 0.1441

		B3W10D	B3W15D	B3W20D		B3W10D	B3W15D	B3W20D
Weight of carrier	kg	1.09	3.02	4.86	lb	2.40	6.66	10.72
Weight (zero stroke)	kg	4.36	13.71	19.94	lb	9.62	30.22	43.97
Weight (per unit of stroke)	g/mm	8.93	13.57	22.14	lb/in	0.50	0.76	1.24

0.71

11.39

0.0071

0.97

16.06

0.0128

¹The listed values relating to straightness/flatness are intended for reference purposes only, and not as an engineering standard of absolute tolerance for a given actuator. Appropriate installation is the single most important factor in reducing such deviation, so good engineering practices such as measurement, mapping, etc. must be employed in applications with stringent straightness/flatness requirements.

Weight of carrier

Weight (zero stroke)

Weight (per unit of stroke)

kg

kg

kg/mm

0.39

3.42

0.0069

² Heat generated by the motor and drive should be taken into consideration as well as linear velocity and work cycle time. For applications that require operation outside of the recommended temperature range, contact the factory. lb

lb

lb/in

0.85

7.54

0.389

1.56

25.12

0.395

2.14

35.4

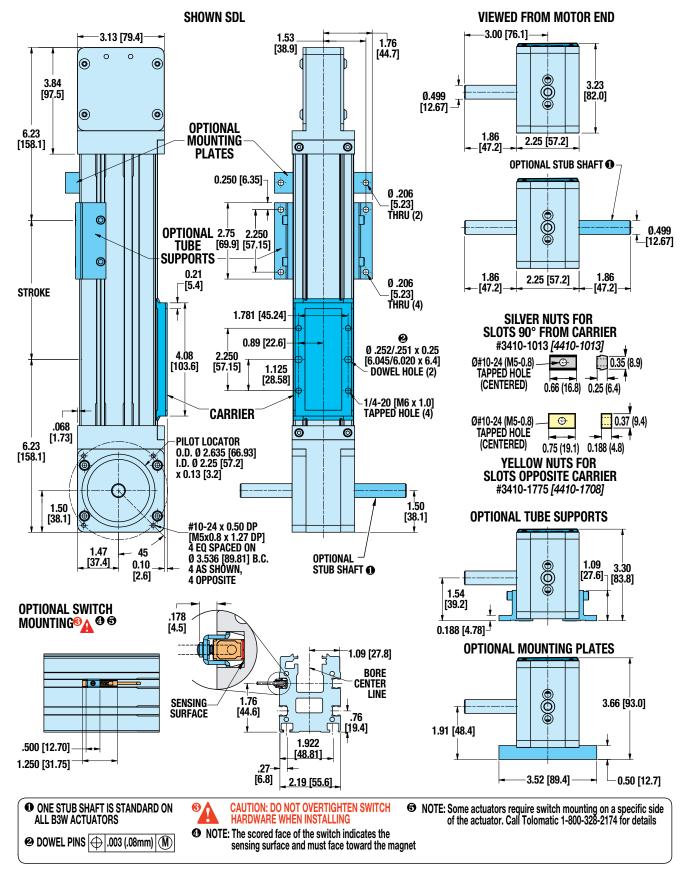
0.716

LARGE FRAME MOTORS AND SMALLER SIZE ACTUATORS: Cantilevered motors need to be supported if subjected to continuous rapid reversing duty and/or under dynamic conditions.

NOTE: Zero stroke inertia and weight are for an assembled actuator (including carrier, pulley and belt material) that has zero stroke length. To calculate system inertia use the formula below:

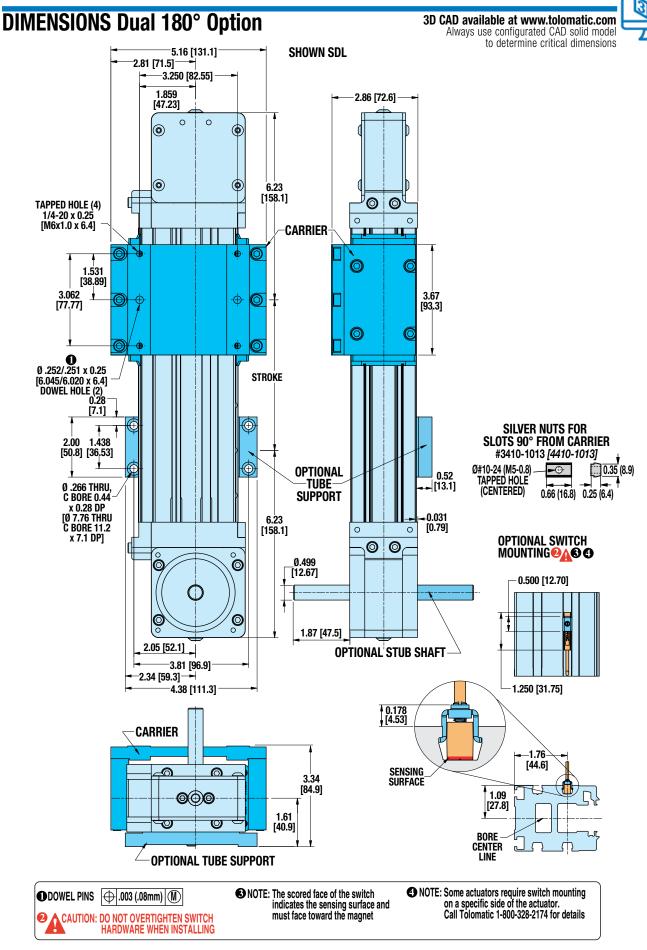
System Inertia = Inertia (per unit of stroke) + [Inertia (per unit of stroke) x number of units]

(For weight calculation substitute inertia with weight in the above formula)

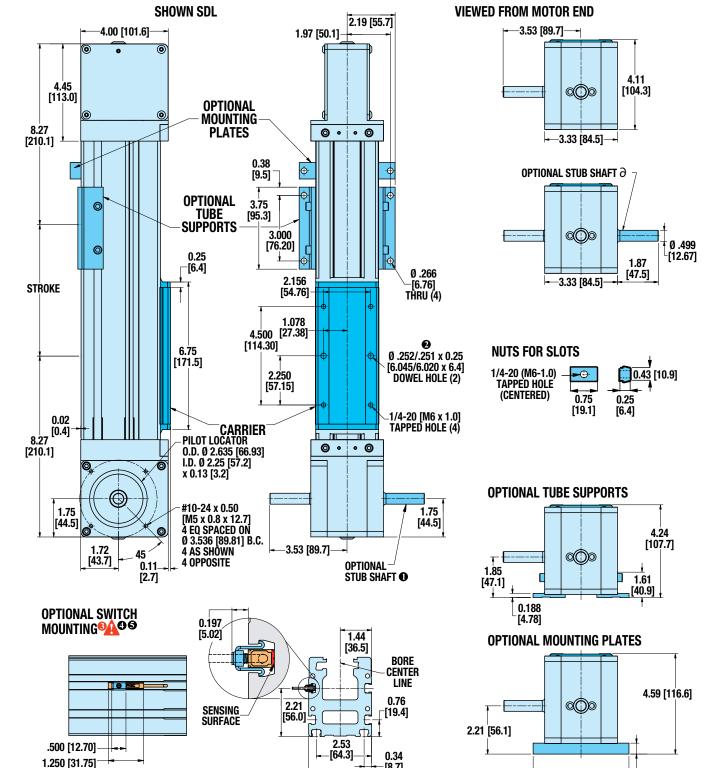


³ Protected against ingress of solid particles greater than 1 mm (.039 in) and splashing water.
*"L" is maximum distance between supports - See Support Recommendations graph pg B3_9.

DIMENSIONS Actuator & Options


3D CAD available at www.tolomatic.com
Always use configurated CAD solid model
to determine critical dimensions

Unless otherwise noted, all dimensions shown are in inches [Dimensions in brackets are in millimeters]



DIMENSIONS Actuator & Options

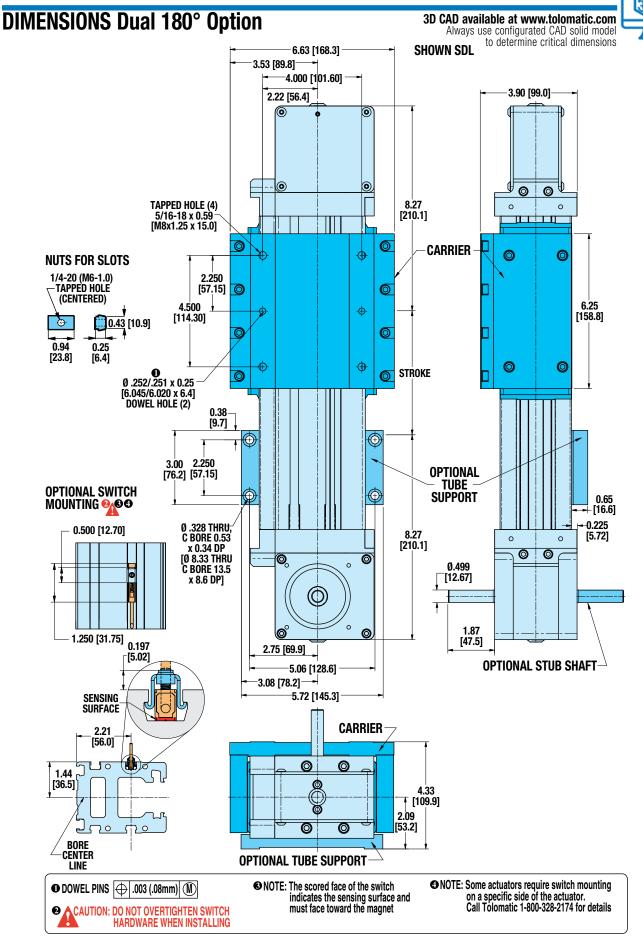
❷ DOWEL PINS |⊕|.003 (.08mm)| **M**)

CAUTION: DO NOT OVERTIGHTEN SWITCH HARDWARE WHEN INSTALLING

NOTE: Some actuators require switch mounting on a specific side of the actuator. Call Tolomatic 1-800-328-2174 for details

4.38 [111.3]

NOTE: The scored face of the switch indicates the sensing surface and must face toward the magnet


2.88 [73.0]

Unless otherwise noted, all dimensions shown are in inches [Dimensions in brackets are in millimeters]

0.50 [12.7]

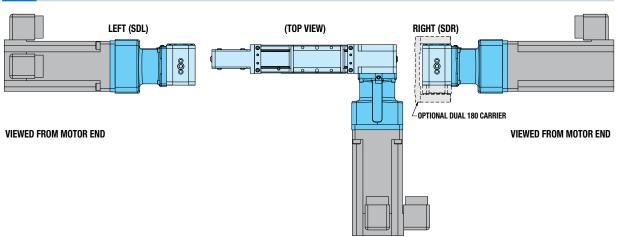
[8.7]

DIMENSIONS Actuator & Options 3D CAD available at www.tolomatic.com Always use configurated CAD solid model to determine critical dimensions 2.85 [72.3] **SHOWN SDL** VIEWED FROM MOTOR END 4.50 [114.3] 2.57 [65.2] -3.87 [98.3] → 4.55 4.64 [115.6] **OPTIONAL** [117.9] $\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$ MOUNTING **PLATES** 0 ۰ 0 8.50 [215.8] 0.31 [7.9]Φ 4.00 [101.6] -Ø.328 —[8.33] Thru (2) 4.00 3.375 **OPTIONAL NUTS FOR SLOTS** [101.6] [85.73] **TUBE** SUPPORTS 5/16 - 18 [M8-1.25] TAPPED HOLE 0 0.61 [15.5] 0.328 (CENTERED) 0.25 0.94 0.41 [10.4] —[8.33] Thru (4) [6.4] [23.8] STROKE 3.125 [79.38] OPTIONAL STUB SHAFT ① 1.563 [39.69] 4.750 0.50 7.25 [120.65] Ø .251/.250 x 0.25 [6.045/6.020 x 6.4] [12.7] [184.2] 2.375 \bigcirc **DOWEL HOLE (2)** [60.33] 5/16-18 [M8 x 1.25] —TAPPED HOLE (4) [47.5] 0.01 4.00 [101.6] [0.2]0 ۰ • 0 CARRIER 8.50 [215.8] OPTIONAL TUBE SUPPORTS PILOT LOCATOR O.D. Ø 2.635 [66.93] I.D. Ø 2.25 [57.2] 1.80 x 0.13 [3.2] 1.80 4.73 [45.7] [45.7] [120.1] OPTIONAL 0.143 1.87 STUB SHAFT 1 1.50 [45.2] [3.63][47.5] [38.1] 0.188 [4.78]-0.034 [0.85] **OPTIONAL SWITCH OPTIONAL MOUNTING PLATES** MOUNTING 449 6 1.97 [50.0] **BORE** CENTER 5.14 [130.4] \bigcirc 1.02 2.39 [25.8]2.27 SENSING SURFACE [60.8][57.7] -0.50.500 [12.70] 5.69 [144.5] 0.50 3.44 [87.3] [12.7] [12.7] 1.250 [31.75] 3.94 [100.0] CAUTION: DO NOT OVERTIGHTEN SWITCH ONE STUB SHAFT IS STANDARD ON **6** NOTE: Some actuators require switch mounting on a specific side HARDWARE WHEN INSTALLING of the actuator. Call Tolomatic 1-800-328-2174 for details **ALL B3W ACTUATORS** NOTE: The scored face of the switch indicates the ② DOWEL PINS ⊕ | .003 (.08mm) (Ŋ) sensing surface and must face toward the magnet

Unless otherwise noted, all dimensions shown are in inches [Dimensions in brackets are in millimeters]

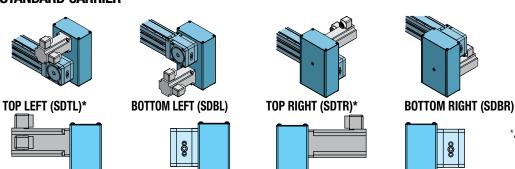
DIMENSIONS Dual 180° Option

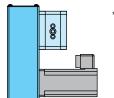
3D CAD available at www.tolomatic.comAlways use configurated CAD solid model



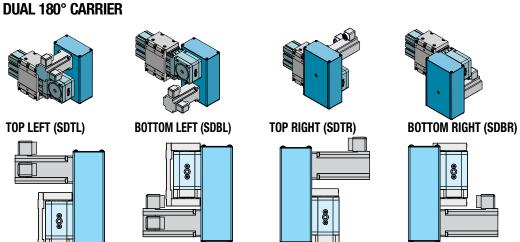
MOTOR MOUNTING

3D CAD available at www.tolomatic.com Always use configurated CAD solid model to determine critical dimensions





B3W(D) REDUCTION DRIVE MOTOR MOUNTING


STANDARD CARRIER

8

*▲ NOTE: SDTL & SDTR are generally not recommended because the load may interfere with the motor. Stops or spacers may be required.

B3S & B3W Electric Rodless Actuators

SWITCHES

There are 10 sensing choices: DC reed, form A (open) or form C (open or closed); AC reed (Triac, open); Hall-effect, sourcing, PNP (open); Hall-effect, sinking, NPN (open); each with either flying leads or QD (quick disconnect). Commonly used to send analog signals to PLC (programmable logic controllers), TLL, CMOS circuit or other controller device. These switches are activated by the actuator's magnet.

Switches contain reverse polarity protection. QD cables are shielded; shield should be terminated at flying lead end.

If necessary to remove factory installed switches, be sure to reinstall on the same of side of actuator with scored face of switch toward internal magnet.

SPECIFICATIONS

SPECIFICATIONS										
		REE	D DC		REED AC HALL-EFFECT DC					
ORDER CODE	RT	RM	BT	BM	CT	CM	TT	TM	KT	KM
LEAD	5m	QD*	5m	QD*	5m	QD*	5m	QD*	5m	QD*
CABLE SHIELDING	Unshielded	Shielded†	Unshielded	Shielded†	Unshielded	Shielded†	Unshielded	Shielded†	Unshielded	Shielded†
SWITCHING LOGIC	"A" Norm	ally Open	"C" Norma ll y (Open or Closed	Triac Norn	nally Open	PNP (Sourcii Op		NPN (Sinking)	Norma ll y Open
MECHANICAL CONTACTS	Single-Pole S	Single-Throw	Single-Pole [Double-Throw	Single-Pole S	Single-Throw	NO,	These Are Solid	d State Compon	ents
COIL DIRECT	Ye	es	Ye	es	Y€	es			_	
POWER LED	None		No	one	No	nρ	None		None	
SIGNAL LED	Red <u>●</u>	TOL-O-MATIC	IVC		140		Red <u>●</u> [TOL-O-MATIC	Red 🖭	rol-o-matic
OPERATING VOLTAGE	E 200 Vdc max.		120 Vo	dc max.	120 Vac max.		5 - 25 Vdc			
OUTPUT RATING			_		_		25 Vdc, 200mA dc			
OPERATING TIME	0.6 ms (including	ec max. j bounce)	0.7 msec max. (including bounce)		_		< 10 micro sec.			
OPERATING TEMPERATURE			-40°F [-40°C] 1	to 158°F [70°C]			0°F [-18°C] to 150°F [66°C]			
RELEASE TIME		1.0 ms	ec. max.		_	_	-			
ON TRIP POINT			_	,	-	_	150 Gauss maximum			
OFF TRIP POINT			_		_		40 Gauss minimum			
**POWER RATING (WATTS)		.0 §) § § ——————————————————————————————————	10.0		5.0			
VOLTAGE DROP	2.6 V typica	I at 100 mA		IA	_		-			
RESISTANCE		0.1 Ω Ini	tial (Max.)		_		_			
CURRENT CONSUMPTION		_			1 Amp at 86°F [30°C]	0.5 Amp at 140°F [60°C]	200 mA at 25 Vdc			
FREQUENCY		_			47 - (63 Hz				
CABLE MIN. STATIC					0.630"	[16mm]				
RADIUS DYNAMIC					Not Recor	mmended				

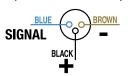
A CAUTION: DO NOT OVER TIGHTEN SWITCH HARDWARE WHEN INSTALLING!

** **WARNING**: Do not exceed power rating (Watt = Voltage X Amperage). Permanent damage to sensor will occur.

*QD = Quick Disconnect; Male coupler is located 6" [152mm] from sensor,

Female coupler to flying lead distance is 197" [5m] also see Cable Shielding specification above

REPLACEMENT OF QD SWITCHES MANUFACTURED BEFORE JULY 1, 1997: It will be necessary to replace or rewire the female end coupler.



Wiring

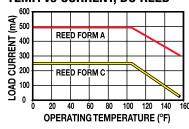
Quick disconnect

Quick disconnect SIGNAL Wiring

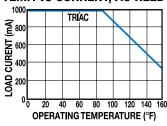
Reed Switch Life Expectancy: Up to 200,000,000 cycles (depending on load current, duty cycle and environmental conditions)

†Shielded from the female quick disconnect coupler to the flying leads. Shield should be terminated at flying lead end.

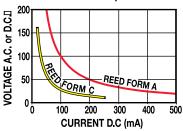
[§] Maximum current 500mA (not to exceed 10VA) Refer to Temperature vs. Current graph and Voltage Derating graph



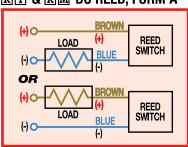
B3S & B3W Electric Rodless Actuators


SWITCH PERFORMANCE

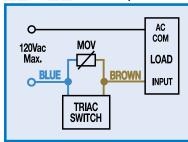
PERFORMANCE


TEMP. vs CURRENT, DC REED

TEMP. vs CURRENT, AC REED



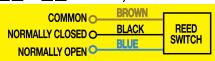
VOLTAGE DERATING, DC REED



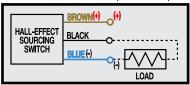
WIRING DIAGRAMS

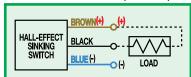
RT & RM DC REED, FORM A

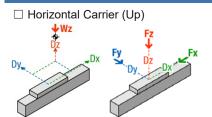
CT & CM AC REED, TRIAC

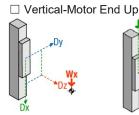


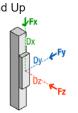
INSTALLATION INFORMATION

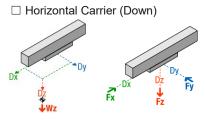


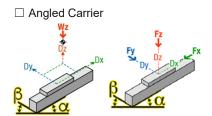

THE NOTCHED FACE OF THE SWITCH INDICATES THE SENSING SURFACE AND MUST FACE TOWARD THE MAGNET.

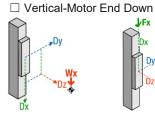


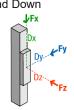

THE NOTCHED GROOVE IN THE ACTUATOR INDICATES THE GROOVE TO INSTALL THE SWITCH. CONTACT TOLOMATIC IF SWITCHES ARE REQUIRED ON ANOTHER SIDE OF ACTUATOR.

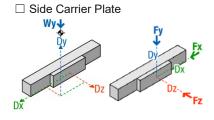

Electric Rodless Actuator Application Worksheet


USE THE TOLOMATIC SIZING AND SELECTION SOFTWARE AVAILABLE ON-LINE AT www.tolomatic.com or call Tolomatic at 1-800-328-2174. We will provide any assistance needed to determine the proper actuator for the job.


ACTUATOR ORIENTATION







α angle: β angle: _

ACTUATOR REQUIREMENTS

Stroke length:	_ □ inches □ millimeters
No. of Cycles:	\square per minute \square per hour
Actuator to Hold Position:	\square required \square not required
If Hold Required: □	after move □ during power loss
Motor: □ Third Party Motor	☐ Tolomatic Motor

ABBII		I ENVIRO	
			1000 - 011
	197 - 4 - 1 - 1		

Ambient Temperature: □ °F □ °C
Actuator Environment Description and Ingress Protection Requirements:

MOTION & FORCES

Extend	
Move Distance:	🗆 in 🗆 mm
Move Time:	seconds
Max. Speed:	□ in/s □ mm/s
Dwell Time After Move:	seconds
Load	
Load:	□ lb □ kg
Supported by Actuator:	%
Center of Load:	
D _X :	$_$ \square in \square mm
D _Y :	$_{\square}$ in \square mm
D _z :	_ □ in □ mm
Assign to Moves:	\square Extend \square Retract

Retract

Move Distance:	⊔ in ⊔ mm
Move Time:	seconds
Max. Speed:	□ in/s □ mm/s
Dwell Time After Move:	seconds
Force	
Force:	
Force Direction:	\square Toward \square Away
Direction of Applied Force:	$\square \ F_x \ \square \ F_y \ \square \ F_z$
Center of Applied Force:	
D _X :	
D _Y :	
D _z :	🗆 in 🗆 mm
Assign to Moves:	☐ Extend ☐ Retrac

SELECTION GUIDELINES

The process of selecting a load bearing actuator for a given application can be complex. It is highly recommended that you contact Tolomatic or a **Tolomatic Distributor for** assistance in selecting the best actuator for your application. The following overview of the selection quidelines are for educational purposes only.

tuator performance and application safety. If either load or any of your moments exceed figures indicated in the Moment and Load Capacity table (page B3 8) for the actuator consider:

- 1) Higher capacity bearing style
- 2) A larger actuator size
- 3) Auxiliary carrier
- 4) External guide system

CHOOSE ACTUATOR FACTOR LF

Choose an actuator that has the (A) thrust, (B) speed and (C) moment load capacity to move the load. A. Max Thrust: B3S see page B3 11;

B3W see page B3_25 B. Max. Speed: B3S see critical speed graphs page B3_13 to B3_15; All B3W

sizes = 200 in/sec (5m/sec). C. Moment & Load B3S & B3W see page B3 8

COMPARE LOAD TO MAXIMUM LOAD CAPACITIES

Calculate the application load (combination of load mass and forces applied to the carrier) and application bending moments (sum of all moments Mx, My, and Mz applied to the carrier). Be sure to evaluate the magnitude of dynamic inertia moments. When a rigidly attached load mass is accelerated or decelerated. its inertia induces bending moments on the carrier. Careful attention to how the load is decelerated at the end of the stroke is required for extended ac-

CALCULATE LOAD

For loads with a center of gravity offset from the carrier account for both applied (static) and dynamic loads. The load factor (LF) must not exceed the value of 1.5.

$$L_F = \frac{Mx}{Mx_{max}} + \frac{My}{My_{max}} + \frac{Mz}{Mz_{max}} + \frac{Fy}{Fy_{max}} + \frac{Fz}{Fz_{max}} \le 1.5$$

If LF does exceed the value of 1.5. consider the four choices listed in step #2.

ESTABLISH YOUR MOTION PROFILE "AND CALCULATE ACCELERATION RATE

Using the application stroke length and maximum carrier velocity (or time to complete the linear motion), establish the motion profile. Select either triangular (accel-decel) or trapezoidal (accel-constant speeddecel) profile. Now calculate the maximum acceleration and deceleration rates of the move. For the B3S Acceleration/deceleration should not exceed critical speed (page B3_13) for the screw/nut combination • Select the appropriate numchosen. For the B3W acceleration/deceleration should not exceed 1200 in/sec² (30.48 m/ sec²). Also, do not exceed safe rates of dynamic inertia moments determined in step #3.

SELECT THE LEAD SCREW (B3S ONLY)

Based on the application requirements for accuracy, backlash, quiet operation, life, etc. select the appropriate lead screw type (Acme screw with a solid nut or ball screw with a standard or antibacklash nut) and the pitch (lead). For additional information on screw selection, consult "Which Screw? Picking the Right Technology" (#9900-4644) available at www.tolomatic.com.

→ SELECT MOTOR GEARHEAD IF **NECESSARY) AND** DRIVE

To help select a motor and drive, use the sizing equations located in the Engineering Resources section [ENGR_] of the Tolomatic Electric Products Catalog (#3600-4609) to calculate the application thrust and torque requirements. Refer to Motor sections to determine the motor and drive.

DETERMINE TUBE SUPPPORT/ MOUNTING PLATE/ T-NUT REQUIREMENTS

- Consult the Tube Support graph Requirements the model selected (page B3 9)
- Cross reference the application load and maximum distance between supports
- ber of tube supports, T-nuts or mounting plates and requirements for motor and adapter clearance.

CONSIDER OPTIONS

- Choose metric or inch (US) Conventional) load mounting. (When ordering use **SK** for inch or **SM** for metric)
- Switches Reed, Solid State PNP or NPN, all available normally open or normally closed.

CONSIDER IORIENTATION (B3W ONLY)

Belt drives used in vertical applications will not prevent a load falling in the event of a timing belt failure. A secondary safety measure is recommended if a B3W is used in a safety critical vertical applica-

Use the Tolomatic Sizing & Selection Software or call Tolomatic at 1-800-328-2174

ORDERING

OPTIONS

BASE MODEL
B3S 20 D BNL02 SK36 LMI

I DC18 TS2 BM2 TN8

MODEL TYPE

B3S B3S Screw Drive Rodless Actuator

SIZE 15,

10,

DUAL 180° CARRIER

20

Dual 180° Carrier

NUT/SCREW CONFIGURATION

INCH MODELS (US Conventional)	METRIC Models†
SOLID NUT	SOLID NUT
SN01 SN02, SNA02 SN05	
BALL NUT	BALL NUT
BN02, BNL02	BNM10
BN05, BNL05	BNM05
BN08, BNL08	BN08, BNL08

† The metric version provides metric tapped holes for mounting of the load to the carrier and of the actuator to mounting surfaces

STROKE LENGTH & MOUNTING TYPE

SK____. Stroke, enter desired stroke length in **inches**

SM†_____ Stroke, enter desired stroke length in **millimeters**

NOTE: Actuator mounting threads and mounting fasteners will be either inch or metric; depending on how stroke length is indicated

SK=inch mounting

SM= metric mounting

Not all codes listed are compatible with all options.

Use Tolomatic Sizing Software to determine available options and accessories based on your application requirements.

MOTOR MOUNTING / REDUCTIONS

(must choose one)

LMI In-Line mounting

LME23 Ext. shaft for RP & 23 frame motor

LME34 Ext. shaft for RP & 34 frame motor

***LMX** Extended shaft - old style (see note) ***For replacement actuators with extended motor**

shafts purchased prior to 6/24/02, use the LMX configuration code.

A motor size and code must be selected when specifying a reverse-parallel mounting configuration.

RPL1 1:1 Reverse-Parallel mount left

RPR1 1:1 Reverse-Parallel mount right

RPB1 1:1 Reverse-Parallel mount bottom

RPT1 1:1 Reverse-Parallel mount top

RPL2 2:1 Reverse-Parallel mount left

RPR2 2:1 Reverse-Parallel mount right **RPB2** 2:1 Reverse-Parallel mount bottom

RPT2 2:1 Reverse-Parallel mount top

AUXILIARY CARRIER

DC__Auxiliary Carrier, then center-to-center spacing desired in inches (SK) or millimeters (SM).

(Same unit of measure as stroke length is required)
Center-to-center spacing between
carriers adds to overall length of the
actuator, this distance will not be
subtracted from stroke length specified
in the previous step.

SUPPORTS AND MOUNTING PLATES

(both may be selected)

TS _ Tube Supports plus quantity desired **MP_Mounting Plates plus quantity desired

**Mounting plates are not available on B3SD Dual 180° models.

SWITCHES

(Quantity desired follows product code)

RM_ Reed Switch (Form A) with 5-meter lead/QD (Quick-disconnect)

RT Reed Switch (Form A) with 5-m lead

BM_ Reed Switch (Form C) with 5-meter lead/QD

BT Reed Switch (Form C) with 5-m lead

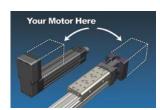
KM_ Hall-effect Sinking Switch with 5-meter lead/QD

KT_ Hall-effect Sinking Switch w/ 5-m lead

TM_ Hall-effect Sourcing Switch with 5-meter lead/QD

TT_ Hall-effect Sourcing Switch with 5-meter lead

CM TRIAC Switch with 5-meter lead/QD


CT TRIAC Switch with 5-meter lead

T-NUTS

TN Additional T-Nuts and quantity

FOOD GRADE LUBRICATION

LUB Grease. Food/Drug

"YOUR MOTOR HERE." MADE-TO-ORDER MOTOR MOUNTS. FAST DELIVERY.

 Select a high-performance Tolomatic electric actuator and we'll provide a motor-specific interface for your motor. With our online database, you can select from over 60 motor manufacturers and hundreds of models.

Visit **www.tolomatic.com/ymh** to find your motor/actuator match!

NOTE: Brakes mounted on reduction drives (especially in vertically positioned actuators) will not prevent back driving of the screw and the load falling under gravity in the event of a timing belt failure. An inline motor mount with a fail-safe brake mounted directly to the actuator shaft or a special geared or thru-shaft reduction drive construction should be considered if a brake is required in a safety critical application. Contact Tolomatic for alternative reduction drive brake mounting options.

Gearheads may be used with reduction drives. However, the torque on the belt and internal reduction drive components must remain below the capabilities of the assembly to prevent belt slipping or premature failure. Contact Tolomatic for additional information if required.

FIELD RETROFIT KITS							
ITEM	B3S10_SM	B3S15_SM	B3S20_SM	B3S10_SK	B3S15_SK	B3S20_SK	
Tube Supports	4410-9006	4415-9006	4420-9006	3410-9006	3415-9006	3420-9006	
Tube Supports (B3SD Dual 180° models)	4410-9026	4415-9026	4420-9026	3410-9026	3415-9026	3420-9026	
1/2" Mounting Plates	4410-9030	4415-9030	4420-9030	3410-9142	3415-9056	3420-9056	
1" Mounting Plates	4410-9031	4415-9031	_	3410-9057	3415-9057	_	

ORDERING

DC18 TS2 BM2 TN16

MODEL TYPE

B3W B3W Series Belt Drive

SIZE

20

10, 15,

DUAL 180° CARRIER

Dual 180° Carrier

BELT MATERIAL AND WIDTH

BWS18 18mm Polyurethane Steel belt (B3W10)

BWS30 30mm Polyurethane Steel belt (B3W15)

BWS40 40mm Polyurethane Steel belt (B3W20)

STROKE LENGTH & MOUNTING TYPE

SK____. Stroke, enter desired stroke length in **inches**

SM†_____ Stroke, enter desired stroke length in millimeters

NOTE: Actuator mounting threads and mounting fasteners will be either inch or metric; depending on how stroke length is indicated

SK=inch mounting

SM= metric mounting

† The metric version provides metric tapped holes for mounting of the load to the carrier and of the actuator to mounting surfaces

Not all codes listed are compatible with all options.

Use Tolomatic Sizing Software to determine available options and accessories based on your application requirements.

MOTOR MOUNTING / REDUCTIONS

(must choose one)

SDL, SDLB* Direct Drive on left SDR, SDRB* Direct Drive on right

A motor size and code must be selected when specifying a 3:1 reduction.

SDTL, SDTLB* 3:1 Reduction on top left SDTR, SDTRB* 3:1 Reduction on top right SDBL, SDBLB* 3:1 Reduction on bottom left SDBR, SDBRB* 3:1 Reduction on bottom right * For Dual Stub Shaft option

AUXILIARY CARRIER

DC_ _Auxiliary Carrier, then center-to-center spacing desired in inches (SK) or millimeters (SM).

(Same unit of measure as stroke length is required)
Center-to-center spacing between
carriers adds to overall length of the
actuator, this distance will not be
subtracted from stroke length specified
in the previous step.

"YOUR MOTOR HERE." MADE-TO-ORDER MOTOR MOUNTS. FAST DELIVERY.

 Select a high-performance Tolomatic electric actuator and we'll provide a motor-specific interface for your motor. With our online database, you can select from over 60 motor manufacturers and hundreds of models.

Visit **www.tolomatic.com/ymh** to find your motor/actuator match!

SUPPORTS AND MOUNTING PLATES

(both may be selected)

TS _ Tube Supports, enter quantity desired

MP_ Mounting Plates, enter quantity

desired

SWITCHES									
CODE	•	ТҮРЕ	QUICK- Disconnect	LEAD LENGTH	QUANTITY				
RM	CEED	Form A	QD	5 meters	After code enter quantity desired				
RT			no						
BM		Form C	QD						
BT			no						
KM	HALL-EFFECT	Sinking	QD						
KT			no						
TM		Sourcing	QD						
TT	Ĥ		no						
CM	TRIAC		QD		Af				
CT			no						

T-NUTS

TN _ Additional T-Nuts, enter quantity

NOTE: Brakes mounted on reduction drives (especially in vertically positioned actuators) will not prevent back driving of the screw and the load falling under gravity in the event of a timing belt failure. An inline motor mount with a fail-safe brake mounted directly to the actuator shaft or a special geared or thru-shaft reduction drive construction should be considered if a brake is required in a safety critical application. Contact Tolomatic for alternative reduction drive brake mounting options.

Gearheads may be used with reduction drives. However, the torque on the belt and internal reduction drive components must remain below the capabilities of the assembly to prevent belt slipping or premature failure. Contact Tolomatic for additional information if required.

FIELD RETROFIT KITS											
ITEM	B3W10_SM	B3W15_SM	B3W20_SM	B3W10_SK	B3W15_SK	B3W20_SK					
Tube Supports	4410-9006	4415-9006	4420-9006	3410-9006	3415-9006	3420-9006					
Tube Supports (B3WD Dual 180° models)	4410-9170	4415-9170	4420-9170	3410-9170	3415-9170	3420-9170					
1/2" Mounting Plates (MRV 23-frame motors)	4410-9030	4415-9030	_	3410-9056	3415-9056	_					
1/2" Mounting Plates (MRV all frame motors)	_	_	4420-9030	ı	-	3420-9056					
1" Mounting Plates (MRV all frame motors)	4410-9031	_	_	3410-9057	_	_					
1" Mounting Plates (MRV 34-frame motors)	_	4415-9031	_	_	3415-9057	_					

The Tolomatic Difference Expect More From the Industry Leader:

INNOVATIVE PRODUCTS

Solutions with Endurance TechnologySM for challenging applications.

Built-to-order with configurable stroke lengths and flexible mounting options.

ACTUATOI SIZING

Size and select electric actuators with our online software.

YOUR MOTOR HERE®

Match your motor to compatible mounting plates with Tolomatic actuators.

CAD LIBRARY

Download 2D or 3D CAD files for Tolomatic products.

TECHNICAL SUPPORT

Get a question answered or request a virtual design consultation with one of our

Tolomatic EXCELLENCE IN MOTION

COMPANY WITH
QUALITY SYSTEM
CERTIFIED BY DNV
= ISO 9001=
Certified site: Hamel, MN

USA - Headquarters Tolomatic Inc.

3800 County Road 116 Hamel, MN 55340, USA Phone: (763) 478-8000 Toll-Free: 1-800-328-2174 sales@tolomatic.com www.tolomatic.com

MEXICO

Centro de Servicio

Parque Tecnológico Innovación Int. 23, Lateral Estatal 431, Santiago de Querétaro, El Marqués, México, C.P. 76246 Phone: +1 (763) 478-8000 help@tolomatic.com

EUROPE

Tolomatic Europe GmbH

Elisabethenstr. 20 65428 Rüsselsheim Germany **Phone:** +49 6142 17604-0 help@tolomatic.eu

www.tolomatic.com/de-de

bH Toloma

CHINA

Tolomatic Automation Products (Suzhou) Co. Ltd.

No. 60 Chuangye Street, Building 2 Huqiu District, SND Suzhou Jiangsu 215011 - P.R. China **Phone:** +86 (512) 6750-8506 Tolomatic_China@tolomatic.com

All brand and product names are trademarks or registered trademarks of their respective owners. Information in this document is believed accurate at time of printing. However, Tolomatic assumes no responsibility for its use or for any errors

that may appear in this document. Tolomatic reserves the right to change the design or operation of the equipment described herein and any associated motion products without notice. Information in this document is subject to change without notice.

Visit www.tolomatic.com for the most up-to-date technical information