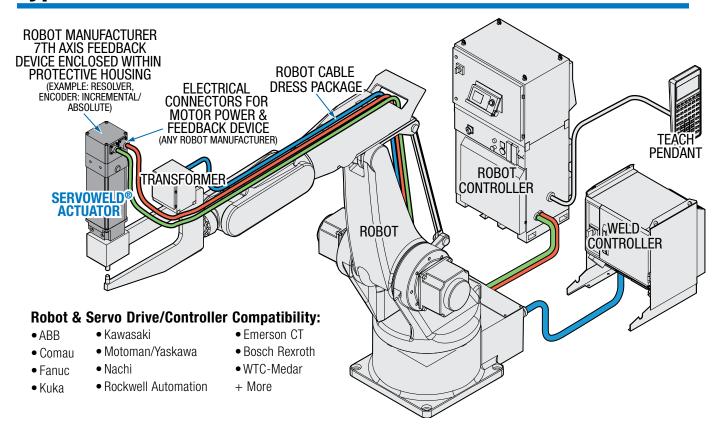


ServoWeld Actuators SWA & SWB MODELS

ServoWeld SWA & SWB

Tolomatic is the world's leading manufacturer of integrated servo actuators for resistance spot welding, used by the world's top weld gun OEM's and numerous global vehicle manufacturers.


Superior Integrated Servo Motor Actuators

Tolomatic's ServoWeld family of integrated servo actuators are designed for best-in-class performance with the factors that are most important for resistance spot welding gun applications.

NUMBER OF WELDS/ PRODUCT LIFE	Tolomatic's superior roller screw design has the <u>highest dynamic load rating for more welds</u> than any competitive technology (other roller screws, ball screw, pneumatic).
FORCE REPEATABILITY	Skewed winding designed for welding minimizes motor cogging and provides industry best actuator force repeatability: • ±3 % Over the Lifetime of the Actuator
EFFICIENCY	All elements of actuator (winding, screw, rod scraper, bearings) are designed to optimize the efficiency of the actuator system and provide the most energy efficient solution on the market.
WELDS/ MINUTE	All elements of the actuator (winding, screw, rod scraper, bearings) are designed to last and run as cool as possible in welding applications, with the ability to add water cooling as an option. This means more welds per minute than any competitive technology (other roller screws, ball screw, pneumatic).
WEIGHT	Tolomatic integrated servo actuators minimize weight when designed into the weldgun. Additionally, Tolomatic can customize actuators for a specific weldgun applications to provide industry leading light weight designs.
LIFETIME COST	By building the longest lasting, most efficient and highest weld per minute actuators on the market, Tolomatic actuators provide the lowest total cost per spot weld.

Typical Robotic ServoWeld Installation

Tolomatic Offers the Broadest, Most Capable Family of Integrated Servo Actuators for Resistance Spot Welding

¹ Based on properly lubricated ServoWeld unit used as recommended in user manual. Weld schedule, tip force, environment and lubrication are factors in the total number of welds achievable with ServoWeld actuators.

² At weld force ³ Weight varies with choice of feedback device and mounting options ⁴

⁴ Some exceptions, see GSWA user manual

SWA & SWB INTEGRATED MOTOR ACTUATOR

ENDURANCE TECHNOLOGY

THRUST TUBE

•Steel thrust tube supports extremely high force capabilities •Salt bath nitride treatment

provides excellent corrosion resistance, surface hardness and

is very resistant to adherence

of weld slag, water and other

potential contaminants

11111

THREADED

ROD END

• Zinc plated steel

construction for

corrosion resistance

 Provides a common interface to multiple rod end options

provide extended service life.

A Tolomatic Design Principle

WATER SLOTS

flow away from thrust

rod to prevent ingress into the actuator

Allows for water to

MULTIPLE MOTOR WINDINGS YOU CAN CHOOSE: •460VAC or 230VAC rated windings potted directly into actuator housing **ROBUST BUSHINGS** • Integral thermal switch for over temperature protection Supports the thrust tube and nut assembly through entire stroke length

Endurance Technology features are

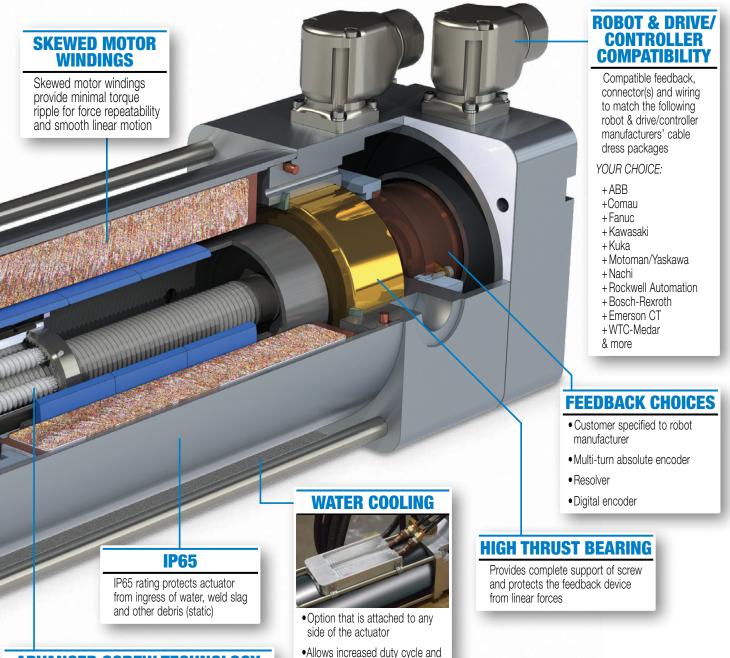
designed for maximum durability to

GREASE PORT •Screw re-lubrication

- system provides extended screw life
- Convenient lubrication without disassembly

INTERNAL **BUMPERS**

Bumpers protect the screw and nut assembly from damage at end of stroke


ROD WIPER WITH SCRAPER

Prevents contaminants from entering the actuator for extended life

UNIVERSAL MOUNTING

Tapped holes in front face allow for mounting in any orientation... 0°, 90°, 180° or 270°

Tolomatic...MAXIMUM DURABILITY

ADVANCED SCREW TECHNOLOGY

- Roller screws provide the highest thrust and life ratings available
- SWA: Highest DLR roller screw provides longest life
- SWB: Lower DLR roller screw, provides longer life than ball screws or inverted roller screws
- Allows increased duty cycle and increased jobs/hour

OPTIONS

BRAKE WATER COOLING REAR TRUNNION MOUNTING

ServoWeld SWA & SWB - Integrated Motor Actuator

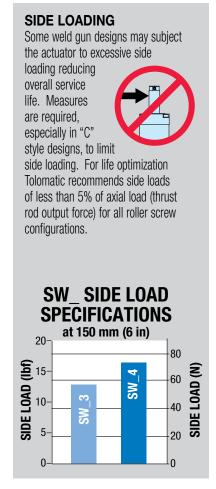
Table 1: Performance & Mechanical Specifications:

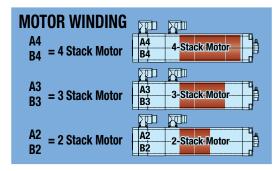
SERIES SWA3 or SWB3			SWA4 or SWB4											
FRAME	mm		90.0						110.0					
SIZE	in		3.54		4.33									
MOTOR W	INDING		A3 / B3		A2 /	A2 / B2 A3 / B3 A4 / B4								
NUT/	SCREW	RN04	RN05	RN10	RN05	RN10	RN04	RN05	RN05XR	RN10	RN04	RN05	RN05XR	RN10
§ SCREW LEAD	mm	4.0	5.0	10.0	5.0	10.0	4.0	5.0	5.0	10.0	4.0	5.0	5.0	10.0
PEAK	kN	11.1	11.1	5.8	14.5 / 12.8	7.3 / 6.4	17.8	14.7	22.1	11.1	17.8	14.7	24.0	17.8
FORCE	lbf	2500	2500	1306	3261/2882	1630/1441	4000	3300	4958	2500	4000	3300	5395	4000
MAX.	mm/sec	234	292	584	292	584	234	292	292	584	234	292	292	584
VELOCITY	in/sec	9.2	11.5	23.0	11.5	23.0	9.2	11.5	11.5	23.0	9.2	11.5	11.5	23.0
SWA SCREW DLR	kN	41.1	53.6	47.2	73.3	76.4	67.2	73.3	91.74	76.4	67.2	73.3	91.7	76.4
(DYNAMIC LOAD RATING)	lbf	9240	12050	10611	16479	17175	15107	16479	20624	17175	15107	16479	20624	17175
SWB SCREW	kN	24.25	31.63	27.85	43.25	45.07	39.65	43.25	_	45.07	39.65	43.25	_	45.07
(DYNAMIC LOAD RATING)	lbf	5452	7110	6260	9723	10133	8913	9723	_	10133	8913	9723	_	10133
NOMINAL BACK	N	436	347	173	405	205	507	405	405	205	507	405	405	205
DRIVE FORCE	lbf	98	78	39	91	46	114	91	91	46	114	91	91	46
WEIGHT*	kg	7.80	7.80	7.80	11.25	11.25	12.29	12.29	12.29	12.29	14.16	14.16	14.16	14.16
WEIGHT	lbf	17.2	17.2	17.2	24.8	24.8	27.1	27.1	27.1	27.1	31.2	31.2	31.2	31.2
STROKE	mm	150	150	150	150	150	150	150	150	150	150	150	150	150
SINUKE	in	6	6	6	6	6	6	6	6	6	6	6	6	6
BASE	kg-cm ²	4.8997	4.8997	4.8997	8.1108	8.1108	9.7864	9.7864	9.7864	9.7864	11.4073	11.4073	11.4073	11.4073
INERTIA	lb-in	1.6723	1.6723	1.6723	2.7716	2.7716	3.3442	3.3442	3.3442	3.3442	3.8966	3.8966	3.8966	3.8966
AMBIENT TEMP **	°C		•		•		C	to 50						
RANGE	°F						32	to 122						
IP RATING	Standard IP65 (static)													
AGENCY LISTINGS														

^{*}Weight varies per feedback device or mounting option. See table below for details.

^{**}From 0-10°C (32-50°F), additional startup procedure may be required for optimal performance. See user manual for details. §NOTE: Screw/Lead Accuracy: 0.023 mm/300 mm; 0.0009 in/ft

Table	2:			V	Veight Add	er		
		Water	Rear		FE	EDBACK OP	TION	
		Cooling	Trunnion	F1	F2	A1	K1***	W1
SW_3	kg	0.36	0.10	0.3	0.77	0.59	1.27	1.03
SW_S	lb	0.80	0.22	0.65	1.70	1.30	2.80	2.26
SW_4	kg	0.52	0.24	0.3	0.48	0.64	1.34	0.72
3W_4	lb	1.15	0.52	0.65	1.05	1.41	2.96	1.59


^{***}Weight adder for K1 option includes weight of brake



ServoWeld SWA & SWB - Integrated Motor Actuator

Table 3: Motor Specifications:

	SW	_3	SW_4							
	MOTOR V	VINDING	А3	В3	A2	B2	А3	В3	A4	B4
N-m/A Peak			0.62	1.21	0.52	0.90	0.61	1.20	0.64	1.29
TORQUE CON	TORQUE CONSTANT (Kt) in-lb			10.7	4.6	8.0	5.4	10.6	5.7	11.4
VOLTAGE CON	V/Krpm Peak	79.8	154	66.1	107.2	78.1	153.1	81.1	162.3	
	No Water	N-m	4.4	4.3	5.5	4.9	8.4	8.5	14.6	14.6
CONTINUOUS	Cooling	in-lb	39	38	48.8	43.0	74	75	129	129
STALL TORQUE	With Water Cooling	N-m	8.8	8.6	11.0	9.7	16.7	17.0	20.8	20.8
		in-lb	78	76	97.6	86	148	150	184	184
CONTINUOUS	No Water Cooling	$A_{\scriptscriptstyle RMS}$	5	2.5	7.5	3.8	9.7	5.0	16	8
STALL CURRENT	With Water Cooling	$A_{\scriptscriptstyle RMS}$	10.0	5.0	15.0	7.6	19.4	10.0	23	12
DE	AK TORQUE	N-m	13.2	12.9	16.5	14.6	25.1	25.4	43.7	43.7
PE	AK TUNQUE	in-lb	117	114	146	129	222	225	387	387
PEA	K CURRENT	A_{RMS}	15	7.5	22.5	11.4	29.1	15.0	48	24
R	ESISTANCE	Ohms	2.07	8.3	0.9	4.2	0.58	2.32	0.36	1.46
INDUCTANCE mH			3.8	15	9.7	15.7	2.75	11.5	2.04	12.11
NO. OF POLES						8	3			
BL	JS VOLTAGE	$V_{\scriptscriptstyle RMS}$	230	460	230	460	230	460	230	460
SPEED	@ RATED V	RPM	3,500							

Table 4: Brake Specifications:

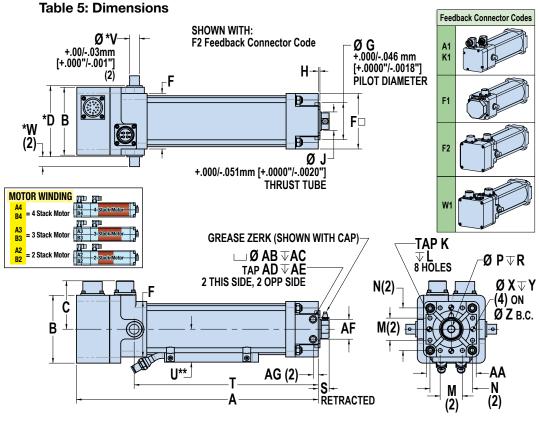
	SERIES	SW_3	SW_4
ROTOR	gm-cm ²	73	239
INERTIA	oz-in²	0.400	1.307
CURRENT	Amp	0.43	0.67
HOLDING	N-m	4.0	10.0
TORQUE	in-lb	35	89
ENGAGE TIME	mSec	40	25
DISENGAGE TIME	mSec	50	50
VOLTAGE	Vdc	24	24

BRAKE CONSIDERATIONS

In all vertical application an un-powered SWA will require a brake to maintain position. Tolomatic recommends that the nominal back

drive force specification (listed in Table 1) be used for reference only. Back drive force is subject to change throughout the life of the actuator, due to mechanical break in, ambient temperature, and duty cycle variation.

A brake can be used with the actuator to keep it from backdriving, typically in vertical applications. A brake may be used for safety reasons or for energy savings allowing the actuator to hold position when un-powered.


Brake w

NOTE: The optional Spring-Applied / Electronically-Released Brake requires 24V power.

Brake will increase actuator length and weight, see Table 2 (K1).

SWA & SWB Dimensions

	Γ-		——————¬RETRAC				IED		(2)	(2)		
					0111.0					OW 4		
					SW_3					SW_4		
Motor Winding	Feedb	ack	A1	F1	F2	K1	W1	A1	F1	F2	K1	W1
A,B 2,3	w/o Brake		350.5	343.5	366.5	**	387.3	402.9	395.4	418.0	**	439.3
A,B 2,3	w/ Brake	١.	373.9	375.5	**	377.7	401.6	427.1	433.9	**	422.2	453.5
A,B 4	w/o Brake	Α	_	-	-	-	_	410.7	403.2	425.8	**	447.1
A,B 4	w/ Brake		_	_	_	-	_	434.9	441.7	**	423.3	461.3
		В	90.0	90.0	110.0	90.0	110.0	110.0	110.0	110.0	110.0	110.0
		С	85.3	71.6	78.4	86.4	78.0	94.1	78.4	78.4	96.4	78.0
		D*	95.2	95.2	123.0	95.2	123.0	123.0	123.0	123.0	123.0	123.0
Feedback Connector Code/Type		A1 SWIVEL	F1 BOX	F2 BOX	K1 SWIVEL	W1 BOX	A1 SWIVEL	F1 BOX	F2 BOX	K1 SWIVEL	W1 BOX	

*for Trunnion Option **Contact Tolomatic for additional information Dimensions in millimeters

					SW_3					SW_4		
Motor Winding	Feedb	ack	A1	F1	F2	K1	W1	A1	F1	F2	K1	W1
A,B 2,3	w/o Brake		13.80	13.52	14.43	**	15.25	15.86	15.57	16.46	**	17.29
A,B 2,3	w/ Brake	Α	14.72	14.78	**	14.87	15.81	16.81	17.08	**	16.62	17.85
A,B 4	w/o Brake	A	-	-	-	-	-	16.17	15.8 7	16.76	**	17.60
A,B 4	w/ Brake		-	_	_	-	_	17.12	17.39	**	16.67	18.16
		В	3.54	3.54	4.33	3.54	4.33	4.33	4.33	4.33	4.33	4.33
		C	3.36	2.82	3.09	3.40	3.07	3.71	3.09	3.09	3.80	3.07
		D*	3.75	3.75	4.84	3.75	4.84	4.84	4.84	4.84	4.84	4.84
	nck Connecto ode/Type	r	A1 SWIVEL	F1 BOX	F2 BOX	K1 SWIVEL	W1 BOX	A1 SWIVEL	F1 BOX	F2 BOX	K1 SWIVEL	W1 BOX

*for Trunnion Option **Contact Tolomatic for additional information Dimensions in inches

	SW_3	SW_4
F	90.0	110.0
G	60.000	64.500
Н	2.8	3.4
J	30.135	34.926
K	M8 x 1.25	M8 x 1.25
L	16.0	13.0
M	36.0	29.072
N	69.0	79.874
P	M12 x 1.25	M20 x 1.5
R	22.2	25.9
S	17.6	19.1
T	273.0	321.0
U**	53.3	66.7
٧*	15.98	20.0
W*	16.0	20.1
X	-	8.052/8.026
Y	_	12.7
Z	-	85.00
AA	_	94.01/93.95
AB	ı	12.09/12.04
AC	I	6.00
AD	-	M10 x 1.5
ΑE		16.00
AF	_	50.00
AG		15.00

*for Trunnion Option **for Water Cooling Option Dimensions in millimeters


	SW_3	SW_4
F	3.54	4.33
G	2.3622	2.5394
Н	0.11	0.13
J	1.1864	1.3750
K	M8 x 1.25	M8 x 1.25
L	0.63	0.51
M	1.42	1.1446
N	2.72	3.1446
P	M12 x 1.25	M20 x 1.5
R	0.88	1.02
S	0.69	0.75
T	10.75	12.64
U**	2.10	2.63
٧*	0.629	0.787
W*	0.63	0.79
X	_	0.3170/0.3160
Y	_	0.50
Z	_	3.346
AA	_	3.701/3.699
AB	-	0.476/0.474
AC	-	0.236
AD	_	M10 x 1.5
AE	-	0.630
AF	_	1.969
AG	_	0.591

*for Trunnion Option **for Water Cooling Option Dimensions in inches

Complete Verification Testing is Performed on Every Actuator

<u>Every</u> ServoWeld actuator has to pass rigorous testing at our factory. With this extra quality step we provide peace of mind to our customers and enable them to start their production faster, worry free!

Functional unit testing for hundreds of cycles quantifies stroke, length, torque under no load, input current vs force standard deviation.

Testing parameter results in progress for the Functional Test procedure.

Final system test ensures the feedback device is properly aligned with the ServoWeld motor poles.

We verify the performance of each individual unit before delivery to ensure they conform to Tolomatic's high standard of performance.

1. High POT (High Potential/High Voltage Test)

This standard electric motor test procedure is a 3-part test that checks the insulation system of the assembly to verify proper armature and thermal wire insulation.

2. Electronic phasing of ServoWeld® and feedback device (Encoder, Resolver, Feedback Device)

Using a fixed current and a specially designed fixture the feedback device is physically and electronically aligned relative to the phasing of the ServoWeld motor.

3. Functional Testing

Performed with Tolomatic motion control components and dedicated data acquisition equipment. Operated for hundred of cycles, this test quantifies these parameters - stroke length, torque under no load, input current vs force average, input current vs force standard deviation - using an electronic load cell in conjunction with data acquisition equipment.

4. Tolomatic System Test

Using a single-axis control unit the test ensures that the feedback device is properly aligned with the poles of the ServoWeld motor.

ServoWeld Application Guidelines

SIDE LOADING: Some weld gun designs may subject the actuator to excessive side loading, reducing overall service life. The GSWA33, GUIDED actuator will accommodate side loading. For other ServoWeld configurations, measures are required, especially in "C" style designs, to limit side loading. For life optimization Tolomatic recommends side loads of less than 5% of axial load (thrust rod output force) for all roller screw configurations and less than 1% of axial load for all ball screw configurations.

For maximum service life, external guiding is recommended to minimize side loading to the thrust rod and provide consist weld gun movable tip/fixed tip alignment throughout service life.

THRUST ROD WIPER/SCRAPER: The thrust rod wiper/scraper assembly is field replaceable. For maximum service life, measures should be taken to reduce/eliminate contamination, weld slag, and water in the thrust rod wiper/scraper interface area. Implementation of industrial thrust rod boot and/or deflective device can be effectively utilized in this area.

CABLES: Shielded power & feedback cables are recommended to minimize electrical noise/grounding issues. Electrical noise or inadequate grounding can corrupt the feedback device signal.

RSW SERVO SYSTEM CALIBRATION: RSW weld gun servo system consists of robot 7th axis amplifier, robot feedback device, robot RSW software, weld gun chassis, & ServoWeld.

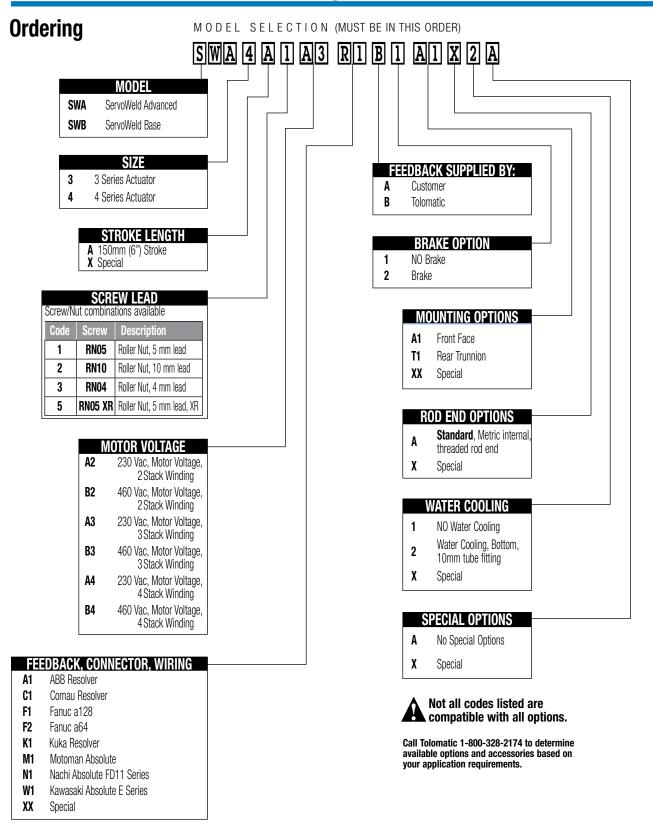
For optimal RSW weld gun servo system performance the calibration process should include maximum weld tip force from the production weld schedule, tip dress force, and multiple weld tip forces in-between. Utilizing all the available robot manufacturer force table inputs will provide best RSW weld gun servo system performance. The same weld tip part contact speed should be used for both RSW weld gun servo system calibration and production weld schedule.

WELD TIP/PART CONTACT SPEED: Tolomatic testing confirms the highest ServoWeld repeatability (INPUT CURRENT verses OUTPUT FORCE) at a weld tip part contact speed of 25mm/second or less. Speeds greater than 25mm/second can create "impact contribution" to the weld force. This impact contribution to the weld force deteriorates prior to completion of the weld cycle.

ROBOT CARRIED APPLICATIONS: Robot carried RSW gun applications have reduced exposure to water pooling/water ingression by virtue of the continuous robot movement and various RSW gun positions. In addition, in robot carried applications positioning of the RSW gun can be programmed as part of the weld cap change program/routine to eliminate ServoWeld exposure to water. (ServoWeld above weld caps)

ROBOT MANUFACTURER SERVO FILE: Robot manufacturer servo parameter files for operation of ServoWeld are available only from the robot manufacturer. Each robot manufacturer creates 3rd

manufacturer. Each robot manufacturer creates 3rd party motor servo parameter files, validates operation of ServoWeld via their 7th axis, and maintains servo motor parameter file for operation of ServoWeld.


TOOL CHANGER APPLICATIONS: Weld gun storage fixture in cell should position weld gun so movable electrode is not loading ServoWeld thrust rod - back driving the ServoWeld. Weld gun tips should be positioned to weld gun closed at low force prior to disconnect from robot/tool changer. Consider ServoWeld configured with integral brake option.

FIXED/PEDESTAL APPLICATIONS: One of the more challenging RSW applications is a pedestal RSW gun, ServoWeld mounted vertical – thrust rod up. Measures should be taken to reduce and/or eliminate the ServoWeld to water exposure, water pooling/spray in the access areas of the ServoWeld unit to maximize overall service life.

- Pedestal RSW guns that can be mounted with the ServoWeld vertical – thrust rod down should be considered.
- Pedestal RSW guns that must be mounted with the ServoWeld vertical – thrust rod up should be mounted at an angle of a least 10 – 15° to minimize water pooling.
- Water channels on interfacing mounting components of the ServoWeld/RSW Gun to minimize water pooling
- Any RSW gun applications that are suspect for water exposure should utilize an external deflector (bib) or a thrust rod boot to keep the water away from the thrust rod wiper/scraper interface area.
- Any RSW gun application that is suspect for water exposure should consider utilizing a manual shut-off valve in the water saver circuit at the RSW gun. Shutting off the water prior to weld cap change can significantly reduce water exposure issues in the RSW gun environment.
- Pedestal RSW gun applications should have the mating electrical connectors (90 degree) on the cable dress package facing down with the cable dress cables looped to reduce water ingression via the electrical connectors (power/feedback).
- Allow adequate cable length so the cables are not in tension.
- Molded mating electrical connectors on the cable dress package for pedestal RSW gun applications
- Confirming full engagement of the cable dress connector to the appropriate mating receptacle on ServoWeld.

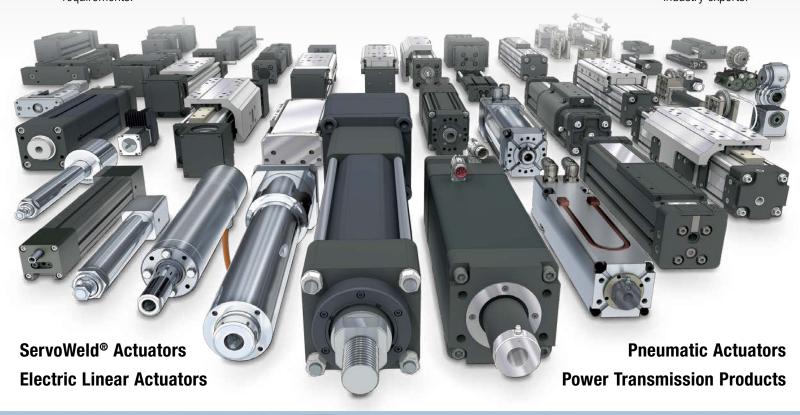
ServoWeld SWA & SWB Integrated Motor Actuators

The Tolomatic Difference Expect More From the Industry Leader:

Unique linear actuator solutions with Endurance TechnologySM to solve your challenging application requirements.

The fastest delivery of catalog products... Built-to-order with configurable stroke lengths and flexible mounting options.

Online sizing that is easy to use, accurate and always up-to-date. Find a Tolomatic electric actuator to meet your requirements.


Match your motor with compatible mounting plates that ship with any Tolomatic electric actuator.

Easy to access CAD files available in the most popular formats to place directly into your assembly.

Extensive motion control knowledge:
Expect prompt, courteous replies to any application and product questions from Tolomatic's industry experts.

Omatic EXCELLENCE IN MOTION

COMPANY WITH
QUALITY SYSTEM
CERTIFIED BY DNV GL
= ISO 9001=
Certified site: Hamel, MN

USA - Headquarters Tolomatic Inc.

3800 County Road 116 Hamel, MN 55340, USA Phone: (763) 478-8000 Toll-Free: 1-800-328-2174 sales@tolomatic.com www.tolomatic.com

MEXICO

Centro de Servicio

Parque Tecnológico Innovación Int. 23, Lateral Estatal 431, Santiago de Querétaro, El Marqués, México, C.P. 76246 Phone: +1 (763) 478-8000 help@tolomatic.com

EUROPE

Tolomatic Europe GmbH

Elisabethenstr. 20 65428 Rüsselsheim Germany

Phone: +49 6142 17604-0 help@tolomatic.eu

CHINA

Tolomatic Automation Products (Suzhou) Co. Ltd.

No. 60 Chuangye Street, Building 2 Huqiu District, SND Suzhou Jiangsu 215011 - P.R. China Phone: +86 (512) 6750-8506 TolomaticChina@tolomatic.com

All brand and product names are trademarks or registered trademarks of their respective owners. Information in this document is believed accurate at time of printing. However, Tolomatic assumes no responsibility for its use or for any errors

that may appear in this document. Tolomatic reserves the right to change the design or operation of the equipment described herein and any associated motion products without notice. Information in this document is subject to change without notice.

Visit www.tolomatic.com for the most up-to-date technical information

©2021 Tolomatic, Inc. 202110190803 LITERATURE NUMBER: 2750-4004 10